Comparison of motion sensor and heart rate monitor for assessment of physical activity intensity in stroke outpatient rehabilitation sessions: an observational study
DOI:
https://doi.org/10.2340/jrm.v56.40559Keywords:
accelerometery, intensity, physical activity, rehabilitation, sensor, strokeAbstract
Objective: To compare the estimation of time spent on 4 categories of physical activity intensity (sedentary behaviour, light physical activity, moderate physical activity, and vigorous physical activity) between a motion sensor and a heart rate monitor during a stroke outpatient rehabilitation session.
Design: A multicentre cross-sectional observational study.
Subjects/Patients: Participants with stroke (> 6 months) undergoing outpatient rehabilitation sessions.
Methods: Participants wore the SenseWear Armband motion sensor and the Polar H10 heart rate monitor during 2 rehabilitation sessions. The times estimated by each device were compared using a generalized linear mixed model and post-hoc tests.
Results: Ninety-nine participants from 29 clinics were recruited and data from 146 sessions were included in the analysis. The estimated times depended on the devices and the physical activity intensity category (F = 135, p < 0.05). The motion sensor estimated more time spent in sedentary behaviour and less time spent in moderate physical activity and vigorous physical activity than the heart rate monitor.
Conclusion: The motion sensor and heart rate monitor provide different estimates of physical activity intensity during stroke rehabilitation. Further research is needed to establish the most appropriate device for each physical activity category.
Downloads
References
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Or-ganization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020; 54: 1451.
https://doi.org/10.1136/bjsports-2020-102955 DOI: https://doi.org/10.1136/bjsports-2020-102955
Martin Ginis KA, Van Der Ploeg HP, Foster C, Lai B, McBride CB, Ng K, et al. Participation of people living with disabilities in physical activity: a global perspective. Lancet 2021; 398: 443-455.
https://doi.org/10.1016/S0140-6736(21)01164-8 DOI: https://doi.org/10.1016/S0140-6736(21)01164-8
Limpens MM, Van Den Berg RJG, Den Uijl I, Sunamura M, Voortman T, Boersma E, et al. Physical activity and sedentary behaviour changes during and after cardiac re-habilitation: can patients be clustered? J Rehabil Med 2023; 55: jrm4343.
https://doi.org/10.2340/jrm.v55.4343 DOI: https://doi.org/10.2340/jrm.v55.4343
Strath SJ, Kaminsky LA, Ainsworth BE, Ekelund U, Freedson PS, Gary RA, et al. Guide to the assessment of physical activity: clinical and research applications: a scien-tific statement from the American Heart Association. Circulation 2013; 128: 2259-2279.
https://doi.org/10.1161/01.cir.0000435708.67487.da DOI: https://doi.org/10.1161/01.cir.0000435708.67487.da
Feigin VL, Stark BA, Johnson CO, Roth GA, Bisignano C, Abady GG, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic anal-ysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20: 795-820.
https://doi.org/10.1016/S1474-4422(21)00252-0 DOI: https://doi.org/10.1016/S1474-4422(21)00252-0
Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Associa-tion. Stroke 2014; 45: 2532-2553.
https://doi.org/10.1161/STR.0000000000000022 DOI: https://doi.org/10.1161/STR.0000000000000022
Roth EJ. Heart disease in patients with stroke: incidence, impact, and implications for rehabilitation part 1: Classification and prevalence. Arch Phys Med Rehabil 1993; 74: 752-760.
https://doi.org/10.1016/0003-9993(93)90038-C DOI: https://doi.org/10.1016/0003-9993(93)90038-C
Ekkekakis P, Parfitt G, Petruzzello SJ. The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripar-tite rationale for exercise intensity prescription. Sports Med 2011; 41: 641-671.
https://doi.org/10.2165/11590680-000000000-00000 DOI: https://doi.org/10.2165/11590680-000000000-00000
Kaur G, English C, Hillier S. Physiotherapists systematically overestimate the amount of time stroke survivors spend engaged in active therapy rehabilitation: an obser-vational study. J Physiother 2013; 59: 45-51.
https://doi.org/10.1016/S1836-9553(13)70146-2 DOI: https://doi.org/10.1016/S1836-9553(13)70146-2
Compagnat M, Salle JY, Mandigout S, Lacroix J, Vuillerme N, Daviet JC. Rating of perceived exertion with Borg scale in stroke over two common activities of the daily living. Top Stroke Rehabil 2018; 25: 145-149.
https://doi.org/10.1080/10749357.2017.1399229 DOI: https://doi.org/10.1080/10749357.2017.1399229
Goikoetxea-Sotelo G, Van Hedel HJA. Defining, quantifying, and reporting intensity, dose, and dosage of neurorehabilitative interventions focusing on motor outcomes. Front Rehabil Sci 2023; 4: 1139251.
https://doi.org/10.3389/fresc.2023.1139251 DOI: https://doi.org/10.3389/fresc.2023.1139251
Chen KY, Bassett DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 2005; 37: S490-S500.
https://doi.org/10.1249/01.mss.0000185571.49104.82 DOI: https://doi.org/10.1249/01.mss.0000185571.49104.82
Joseph C, Strömbäck B, Hagströmer M, Conradsson D. Accelerometry: a feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke. J Rehabil Med 2018; 50: 429-434.
https://doi.org/10.2340/16501977-2326 DOI: https://doi.org/10.2340/16501977-2326
Church G, Smith C, Ali A, Sage K. What is intensity and how can it benefit exercise inter-vention in people with stroke? A rapid review. Front Rehabil Sci 2021; 2: 722668.
https://doi.org/10.3389/fresc.2021.722668 DOI: https://doi.org/10.3389/fresc.2021.722668
DiPasquale J, Trammell M, Clark K, Fowler H, Callender L, Bennett M, et al. Intensity of usual care physical therapy during inpatient rehabilitation for people with neu-rologic diagnoses. PM&R 2022; 14: 46-57.
https://doi.org/10.1002/pmrj.12577 DOI: https://doi.org/10.1002/pmrj.12577
Koopman A, Eken M, Bezeij T, Valent L, Houdijk H. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med 2013; 45: 92-98.
https://doi.org/10.2340/16501977-1072 DOI: https://doi.org/10.2340/16501977-1072
Barrett M, Snow JC, Kirkland MC, Kelly LP, Gehue M, Downer MB, et al. Excessive sedentary time during in-patient stroke rehabilitation. Top Stroke Rehabil 2018; 25: 366-374.
https://doi.org/10.1080/10749357.2018.1458461 DOI: https://doi.org/10.1080/10749357.2018.1458461
Lacroix J, Daviet J-C, Borel B, Kammoun B, Salle J-Y, Mandigout S. Physical activity level among stroke patients hospitalized in a rehabilitation unit. PM&R 2016; 8: 97-104.
https://doi.org/10.1016/j.pmrj.2015.06.011 DOI: https://doi.org/10.1016/j.pmrj.2015.06.011
Folstein MF, Folstein SE, McHugh PR, Fanjiang G. Minimental State Examination: User's manual. Lutz, FL: Psychological Assessment Resources; 2021.
Manns PJ, Haennel RG. SenseWear armband and stroke: validity of energy expenditure and step count measurement during walking. Stroke Res Treat 2012; 2012: 247165.
https://doi.org/10.1155/2012/247165 DOI: https://doi.org/10.1155/2012/247165
Mandigout S, Lacroix J, Ferry B, Vuillerme N, Compagnat M, Daviet J-C. Can energy expen-diture be accurately assessed using accelerometry-based wearable motion de-tectors for physical activity monitoring in post-stroke patients in the subacute phase? Eur J Prev Cardiol 2017; 24: 2009-2016.
https://doi.org/10.1177/2047487317738593 DOI: https://doi.org/10.1177/2047487317738593
Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur J Appl Physiol 2019; 119: 1525-1532.
https://doi.org/10.1007/s00421-019-04142-5 DOI: https://doi.org/10.1007/s00421-019-04142-5
Demeurisse G, Demol O, Robaye E. Motor evaluation in vascular hemiplegia. Eur Neurol 1980; 19: 382-389.
https://doi.org/10.1159/000115178 DOI: https://doi.org/10.1159/000115178
Cheng DK-Y, Dagenais M, Alsbury-Nealy K, Legasto JM, Scodras S, Aravind G, et al. Distance-limited walk tests post-stroke: a systematic review of measurement properties. NRE 2021; 48: 413-439.
https://doi.org/10.3233/NRE-210026 DOI: https://doi.org/10.3233/NRE-210026
MacKay-Lyons M, Billinger SA, Eng JJ, Dromerick A, Giacomantonio N, Hafer-Macko C, et al. Aerobic exercise recommendations to optimize best practices in care after stroke: AEROBICS 2019 update. Phys Ther 2020; 100: 149-156.
https://doi.org/10.1093/ptj/pzz153 DOI: https://doi.org/10.1093/ptj/pzz153
Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. Longitudinal mo-deling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 2007; 39: 822-829.
https://doi.org/10.1097/mss.0b013e31803349c6 DOI: https://doi.org/10.1097/mss.0b013e31803349c6
Brawner CA, Ehrman JK, Schairer JR, Cao JJ, Keteyian SJ. Predicting maximum heart rate among patients with coronary heart disease receiving β-adrenergic blockade therapy. Am Heart J 2004; 148: 910-914.
https://doi.org/10.1016/j.ahj.2004.04.035 DOI: https://doi.org/10.1016/j.ahj.2004.04.035
Haute Autorité de Santé. Consultation et prescription médicale d'activité physique à des fins de santé chez l'adulte. 2022. [cited 2024 Jun 19]. Available from: https://www.has-sante.fr/upload/docs/application/pdf/2018-10/guide_aps_vf.pdf
Warner A, Vanicek N, Benson A, Myers T, Abt G. Agreement and relationship between measures of absolute and relative intensity during walking: a systematic review with meta-regression. Murias JM, editor. PLoS ONE 2022; 17: e0277031.
https://doi.org/10.1371/journal.pone.0277031 DOI: https://doi.org/10.1371/journal.pone.0277031
Bassett DR. Validity of four motion sensors in measuring moderate intensity physical ac-tivity. Med Sci Sports Exerc 2000; 32: S471-S480.
https://doi.org/10.1097/00005768-200009001-00006 DOI: https://doi.org/10.1097/00005768-200009001-00006
Carbonell-Hernández L, Pastor D, Jiménez-Loaisa A, Ballester-Ferrer JA, Montero-Carretero C, Cervelló E. Lack of correlation between accelerometers and heart-rate monitorization during exercise session in older adults. IJERPH 2020; 17: 5518.
https://doi.org/10.3390/ijerph17155518 DOI: https://doi.org/10.3390/ijerph17155518
Kramer S, Johnson L, Bernhardt J, Cumming T. Energy expenditure and cost during wal-king after stroke: a systematic review. Arch Phys Med Rehabil 2016; 97: 619-632.e1.
https://doi.org/10.1016/j.apmr.2015.11.007 DOI: https://doi.org/10.1016/j.apmr.2015.11.007
Compagnat M, Mandigout S, David R, Lacroix J, Daviet JC, Salle JY. Compendium of physi-cal activities strongly underestimates the oxygen cost during activities of daily living in stroke patients. Am J Phys Med Rehabil 2019; 98: 299-302.
https://doi.org/10.1097/PHM.0000000000001077 DOI: https://doi.org/10.1097/PHM.0000000000001077
Serra MC, Balraj E, DiSanzo BL, Ivey FM, Hafer-Macko CE, Treuth MS, et al. Validating acce-lerometry as a measure of physical activity and energy expenditure in chronic stroke. Top Stroke Rehabil 2017; 24: 18-23.
https://doi.org/10.1080/10749357.2016.1183866 DOI: https://doi.org/10.1080/10749357.2016.1183866
Cosoli G, Spinsante S, Scalise L. Wrist-worn and chest-strap wearable devices: systema-tic review on accuracy and metrological characteristics. Measurement 2020; 159: 107789.
https://doi.org/10.1016/j.measurement.2020.107789 DOI: https://doi.org/10.1016/j.measurement.2020.107789
Mühlen JM, Stang J, Lykke Skovgaard E, Judice PB, Molina-Garcia P, Johnston W, et al. Re-commendations for determining the validity of consumer wearable heart rate devices: expert statement and checklist of the INTERLIVE Network. Br J Sports Med 2021; 55: 767-779.
https://doi.org/10.1136/bjsports-2020-103148 DOI: https://doi.org/10.1136/bjsports-2020-103148
Pollock ML, Foster C, Rod JL, Wible G. Comparison of methods for determining exercise training intensity for cardiac patients and healthy adults. In: Kellermann JJ, edi-tor. Advances in cardiology [serial on the Internet]. S. Karger AG; 1982, p. 129-133.
https://doi.org/10.1159/000407132 DOI: https://doi.org/10.1159/000407132
Dos Reis MTF, Aguiar LT, Peniche PDC, Faria CDCDM. Are age-predicted equations valid in predicting maximum heart rate in individuals after stroke? Disabil Rehabil 2023; Aug 22 [online ahead of print].
https://doi.org/10.1080/09638288.2023.2247981 DOI: https://doi.org/10.1080/09638288.2023.2247981
Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation 2011; 123: 1010-1020.
https://doi.org/10.1161/CIRCULATIONAHA.110.940577 DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.940577
Gonçalves C, Raimundo A, Abreu A, Bravo J. Exercise Intensity in patients with cardiovas-cular diseases: systematic review with meta-analysis. IJERPH 2021; 18: 3574.
https://doi.org/10.3390/ijerph18073574 DOI: https://doi.org/10.3390/ijerph18073574
Published
How to Cite
License
Copyright (c) 2024 Stéphanie Goncalves, Stéphane Mandigout, Morgane Le Bourvellec, Noémie C. Duclos
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.