Comparing the Effect of Implanted Peroneal Nerve Stimulation and Ankle-Foot Orthosis on Gait Kinematics in Chronic Hemiparesis: A Randomized Controlled Trial
DOI:
https://doi.org/10.2340/jrm.v55.7130Keywords:
Stroke, Hemiparesis, Assistive device, Functional electrical stimulation, Motion analysisAbstract
Objective: Impaired ankle dorsiflexion in hemiparesis may be treated with ankle-foot orthosis or functional electrical stimulation. Semi-implanted selective functional electrical stimulation uses independent stimulations of deep and superficial peroneal nerves. The aim of this study was to compare gait kinematics using ankle-foot orthosis or semi-implanted selective functional electrical stimulation over 6 months in hemiparesis.
Methods: Subjects with chronic hemiparesis, randomized into ankle-foot orthosis or semi-implanted selective functional electrical stimulation groups, underwent comfortable gait analysis without and with device OFF and ON, before, and 3 and 6 months after treatment onset. The effects of condition, visit and group on gait kinematics (analysis of variance; ANOVA) were analysed.
Results: A total of 27 subjects were included (ankle-foot orthosis, n = 13; semi-implanted selective functional electrical stimulation, n = 14). The only between-group difference in changes from OFF to ON conditions was a deteriorated ankle dorsiflexion speed with ankle-foot orthosis at month 6 (condition*group, p = 0.04; ankle-foot orthosis, –60%, p = 0.02; semi-implanted selective functional electrical stimulation, non significant). Both groups pooled, from OFF to ON gait speed (+ 0.07 m/s; + 10%), cadence (+ 4%), step length (+ 6%) and peak ankle dorsiflexion (+ 6°) increased, and peak ankle inversion (–5°) and peak knee flexion (–2°) decreased (p < 0.001); finally, peak knee flexion in the OFF condition increased (+ 2°, p = 0.03).
Conclusion: Semi-implanted selective functional electrical stimulation and ankle-foot orthosis similarly impacted gait kinematics in chronic hemiparesis after 6 months of use. Ankle dorsiflexion speed in swing deteriorated markedly with ankle-foot orthosis.
LAY ABSTRACT
After a central nervous system injury, walking disorders are associated with ankle dorsiflexion and foot eversion in the paretic limb during the swing phase. Movement of the ankle can be partially corrected with ankle-foot orthosis (AFO) or functional electrical stimulation (FES). The semi-implanted selective FES (SIS-FES) is an advanced FES device using independent stimulations of deep and superficial peroneal nerves, to separately control movements of ankle dorsiflexion, hallucis extension and foot eversion, and to optimize FES-associated walking improvements. This study compared walking using AFO or SIS-FES over 6 months in hemiparesis. A total of 27 patients with chronic hemiparesis, randomized into AFO or SISFES groups, underwent comfortable walking analysis without and with device OFF and ON, before, and 3 and 6 months after treatment onset. SIS-FES and AFO similarly improved walking speed, cadence, step length, ankle dorsiflexion and foot eversion, while ankle dorsiflexion speed in swing markedly deteriorated with AFO.
Downloads
References
Gracies JM. Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve 2005; 31: 535–551. DOI: 10.1002/mus.20284 DOI: https://doi.org/10.1002/mus.20284
Gracies JM. Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle Nerve 2005; 31: 552–571. DOI: 10.1002/mus.20285 DOI: https://doi.org/10.1002/mus.20285
Ruderman RJ, Bajema SL, McDowell JF. A universal temporary ankle-foot orthosis. Phys Ther 1973; 53: 151–152. DOI: 10.1093/ptj/53.2.151 DOI: https://doi.org/10.1093/ptj/53.2.151
Hesse S, Luecke D, Jahnke MT, Mauritz KH. Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. Int J Rehabil Res 1996; 19: 133–141. DOI: 10.1097/00004356-199606000-00004 DOI: https://doi.org/10.1097/00004356-199606000-00004
Ferreira LA, Neto HP, Grecco LA, Christovão TC, Duarte NA, Lazzari RD, et al. Effect of ankle-foot orthosis on gait velocity and cadence of stroke patients: a systematic review. J Phys Ther Sci 2013; 25: 1503–1508. DOI: 10.1589/jpts.25.1503 DOI: https://doi.org/10.1589/jpts.25.1503
Tyson SF, Sadeghi-Demneh E, Nester CJ. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin Rehabil 2013; 27: 879–891. DOI: 10.1177/0269215513486497 DOI: https://doi.org/10.1177/0269215513486497
Liberson WT, Holmquest HJ, Scot D, Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 1961; 42: 101–105.
Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng 2002; 10: 260–279. DOI: 10.1109/TNSRE.2002.806832 DOI: https://doi.org/10.1109/TNSRE.2002.806832
Gil-Castillo J, Alnajjar F, Koutsou A, Torricelli D, Moreno JC. Advances in neuroprosthetic management of foot drop: a review. J Neuroeng Rehabil 2020; 17: 46. DOI: 10.1186/s12984-020-00668-4 DOI: https://doi.org/10.1186/s12984-020-00668-4
Sheffler LR, Hennessey MT, Naples GG, Chae J. Peroneal nerve stimulation versus an ankle foot orthosis for correction of footdrop in stroke: impact on functional ambulation. Neurorehabil Neural Repair 2006; 20: 355–360. DOI: 10.1177/1545968306287925 DOI: https://doi.org/10.1177/1545968306287925
Kottink AI, Hermens HJ, Nene AV, Tenniglo MJ, van der Aa HE, Buschman HP, et al. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabil 2007; 88: 971–978. DOI: 10.1016/j.apmr.2007.05.002 DOI: https://doi.org/10.1016/j.apmr.2007.05.002
Morone G, Fusco A, Di Capua P, Coiro P, Pratesi L. Walking training with foot drop stimulator controlled by a tilt sensor to improve walking outcomes: a randomized controlled pilot study in patients with stroke in subacute phase. Stroke Res Treat 2012; 2012: 523564. DOI: 10.1155/2012/523564 DOI: https://doi.org/10.1155/2012/523564
Everaert DG, Stein RB, Abrams GM, Dromerick AW, Francisco GE, Hafner BJ, et al. Effect of a foot-drop stimulator and ankle-foot orthosis on walking performance after stroke: a multicenter randomized controlled trial. Neurorehabil Neural Repair 2013; 27: 579–591. DOI: 10.1177/1545968313481278 DOI: https://doi.org/10.1177/1545968313481278
Kluding PM, Dunning K, O’Dell MW, Wu SS, Ginosian J, Feld J, et al. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 2013; 44: 1660–1669. DOI: 10.1161/STROKEAHA.111.000334 DOI: https://doi.org/10.1161/STROKEAHA.111.000334
Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy TM, Brandstater M, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair 2014; 28: 688–697. DOI: 10.1177/1545968314521007 DOI: https://doi.org/10.1177/1545968314521007
Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy T, Brandstater M, et al. Long-term follow-up to a randomized controlled trial comparing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. Neurorehabil Neural Repair 2015; 29: 911–922. DOI: 10.1177/1545968315570325 DOI: https://doi.org/10.1177/1545968315570325
Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil 1997; 11: 201–210. DOI: 10.1177/026921559701100303 DOI: https://doi.org/10.1177/026921559701100303
Sabut SK, Sikdar C, Mondal R, Kumar R, Mahadevappa M. Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke. Disabil Rehabil 2010; 32: 1594–1603. DOI: 10.3109/09638281003599596. DOI: https://doi.org/10.3109/09638281003599596
Ghédira M, Albertsen IM, Mardale V, Gracies JM, Bayle N, Hutin É. Wireless, accelerometry-triggered functional electrical stimulation of the peroneal nerve in spastic paresis: a randomized, controlled pilot study. Assist Technol 2017; 29: 99–105. DOI: 10.1080/10400435.2016.1214933. DOI: https://doi.org/10.1080/10400435.2016.1214933
Prenton S, Hollands KL, Kenney LP. Functional electrical stimulation versus ankle foot orthoses for foot-drop: a meta-analysis of orthotic effects. J Rehabil Med 2016; 48: 646–656. DOI: 10.2340/16501977-2136 DOI: https://doi.org/10.2340/16501977-2136
Prenton S, Hollands KL, Kenney LPJ, Onmanee P. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: a meta-analysis providing direction for future research. J Rehabil Med 2018; 50: 129–139. DOI: 10.2340/16501977-2289 DOI: https://doi.org/10.2340/16501977-2289
Kottink AI, Hermens HJ, Nene AV, Tenniglo MJ, Groothuis-Oudshoorn CG, IJzerman MJ. Therapeutic effect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: a randomized controlled trial. Phys Ther 2008; 88: 437–448. DOI: 10.2522/ptj.20070035 DOI: https://doi.org/10.2522/ptj.20070035
Taylor PN, Wilkinson Hart IA, Khan MS, Slade-Sharman DE. Correction of footdrop due to multiple sclerosis using the STIMuSTEP implanted dropped foot stimulator. Int J MS Care 2016; 18: 239–247. DOI: 10.7224/1537-2073.2015-038 DOI: https://doi.org/10.7224/1537-2073.2015-038
Holsheimer J, Bultstra G, Verloop AJ, van der Aa HE, Hermens HJ. Implantable dual channel peroneal nerve stimulator. Proceedings Ljubljana FES conference, Ljubljana, Slovenia, 1993; pp. 42–44.
van der Aa HE, Bultstra G, Verloop AJ, Kenney L, Holsheimer J, Nene A, et al. Application of a dual channel peroneal nerve stimulator in a patient with a “central” drop foot. Acta Neurochir Suppl 2002; 79: 105–107. DOI: 10.1007/978-3-7091-6105-0_23 DOI: https://doi.org/10.1007/978-3-7091-6105-0_23
Kottink AI, Buschman HP, Kenney LP, Veltink PH, Slycke P, Bultstra G, et al. The sensitivity and selectivity of an implantable two-channel peroneal nerve stimulator system for restoration of dropped foot. Neuromodulation 2004; 7: 277–283. DOI: 10.1111/j.1094-7159.2004.04213.x DOI: https://doi.org/10.1111/j.1094-7159.2004.04213.x
Schiemanck S, Berenpas F, van Swigchem R, van den Munckhof P, de Vries J, Beelen A, et al. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Restor Neurol Neurosci 2015; 33: 795–807. DOI: 10.3233/RNN-150501 DOI: https://doi.org/10.3233/RNN-150501
Berenpas F, Schiemanck S, Beelen A, Nollet F, Weerdesteyn V, Geurts A. Kinematic and kinetic benefits of implantable peroneal nerve stimulation in people with post-stroke drop foot using an ankle-foot orthosis. Restor Neurol Neurosci 2018; 36: 547–558. DOI: 10.3233/RNN-180822 DOI: https://doi.org/10.3233/RNN-180822
Ghédira M, Pradines M, Mardale V, Gracies JM, Bayle N, Hutin E. Quantified clinical measures linked to ambulation speed in hemiparesis. Top Stroke Rehabil 2021; 6: 1–12. DOI: 10.1080/10749357.2021.1943799 DOI: https://doi.org/10.1080/10749357.2021.1943799
Ramsay JW, Wessel MA, Buchanan TS, Higginson JS. Poststroke muscle architectural parameters of the tibialis anterior and the potential implications for rehabilitation of foot drop. Stroke Res Treat 2014; 2014: 948475. doi:10.1155/2014/948475. DOI: https://doi.org/10.1155/2014/948475
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 20; 370: 1453–1457. DOI: 10.1016/S0140-6736(07)61602-X DOI: https://doi.org/10.1016/S0140-6736(07)61602-X
Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke 1995; 26: 982–989. DOI: 10.1161/01.str.26.6.982 DOI: https://doi.org/10.1161/01.STR.26.6.982
Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1987; 1: 6–18.
Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005; 114: 29–36. DOI: 10.1016/j.pain.2004.12.010 DOI: https://doi.org/10.1016/j.pain.2004.12.010
Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al; Standardization and Terminology Committee of the International Society of Biomechanics. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 2002; 35: 543–548. DOI: 10.1016/s0021-9290(01)00222-6 DOI: https://doi.org/10.1016/S0021-9290(01)00222-6
Gold. B, Radar C. Digital processing of signals. New York: McGraw-Hill Co.; 1969.
Winter DA, Sidwall HG, Hobson DA. Measurement and reduction of noise in kinematics of locomotion. J Biomech 1974; 7: 157–159. DOI: 10.1016/0021-9290(74)90056-6 DOI: https://doi.org/10.1016/0021-9290(74)90056-6
Winter DA. The biomechanics and motor control of human gait. Ontario, Canada: University of Waterloo; 1987.
Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res 1990; 8: 383–392. DOI: 10.1002/jor.1100080310 DOI: https://doi.org/10.1002/jor.1100080310
Schulz KF, Grimes DA. Sample size calculations in randomised trials: mandatory and mystical. Lancet 2005; 9–15; 365: 1348–1353. DOI: 10.1016/S0140-6736(05)61034-3 DOI: https://doi.org/10.1016/S0140-6736(05)61034-3
Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C, et al. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil 1999; 80: 1577–1583. DOI: 10.1016/s0003-9993(99)90333-7 DOI: https://doi.org/10.1016/S0003-9993(99)90333-7
Winter DA. Biomechanical motor patterns in normal walking. J Mot Behav 1983; 15: 302–330. DOI: 10.1080/00222895.1983.10735302 DOI: https://doi.org/10.1080/00222895.1983.10735302
Blanchette AK, Noël M, Richards CL, Nadeau S, Bouyer LJ. Modifications in ankle dorsiflexor activation by applying a torque perturbation during walking in persons post-stroke: a case series. J Neuroeng Rehabil 2014; 11: 98. DOI: 10.1186/1743-0003-11-98 DOI: https://doi.org/10.1186/1743-0003-11-98
Tabary JC, Tabary C, Tardieu C, Tardieu G, Goldspink G. Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 1972; 224: 231–244. DOI: 10.1113/jphysiol.1972.sp009891 DOI: https://doi.org/10.1113/jphysiol.1972.sp009891
Jalal N, Gracies JM, Zidi M. Mechanical and microstructural changes of skeletal muscle following immobilization and/or stroke. Biomech Model Mechanobiol 2020; 19: 61–80. DOI: 10.1007/s10237-019-01196-4 DOI: https://doi.org/10.1007/s10237-019-01196-4
Maganaris CN, Reeves ND, Rittweger J, Sargeant AJ, Jones DA, Gerrits K, et al. Adaptive response of human tendon to paralysis. Muscle Nerve 2006; 33: 85–92. DOI: 10.1002/mus.20441 DOI: https://doi.org/10.1002/mus.20441
Berenpas F, Weerdesteyn V, Geurts AC, van Alfen N. Long-term use of implanted peroneal functional electrical stimulation for stroke-affected gait: the effects on muscle and motor nerve. J Neuroeng Rehabil 2019; 16: 86. DOI: 10.1186/s12984-019-0556-2 DOI: https://doi.org/10.1186/s12984-019-0556-2
Thibaut A, Di Perri C, Heine L, Moissenet F, Chantraine F, Schreiber C, et al. Neuroplastic changes mediate motor recovery with implanted peroneal nerve stimulator in individuals with chronic stroke: an open-label multimodal pilot study. Ann Phys Rehabil Med 2021; 64: 101358. DOI: 10.1016/j.rehab.2020.01.004 DOI: https://doi.org/10.1016/j.rehab.2020.01.004
Published
How to Cite
License
Copyright (c) 2023 Emilie Hutin, Mouna Ghédira, Maria Vinti, Sanaa Tazi, Jean-Michel Gracies, Philippe Decq
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.