Correlational analysis between salivary and blood glucose levels in individuals with and without diabetes mellitus: a cross-sectional study

Authors

  • Laasya Shettigar Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
  • Sanchita Sivaraman UBC School of Population and Public Health, British Columbia, Vancouver, Canada
  • Rohini Rao Department of Data Science and Computer Applications, Manipal Institute of Technology (MIT), Manipal, Manipal Academy of Higher Education, Manipal, India
  • Sanjana Akhila Arun Department of Data Science and Computer Applications, Manipal Institute of Technology (MIT), Manipal, Manipal Academy of Higher Education, Manipal, India
  • Aditi Chopra Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
  • Shobha U Kamath Department of Biochemistry, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, India
  • Raju Rana Department of Biochemistry, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, India

DOI:

https://doi.org/10.1080/00016357.2023.2267678

Keywords:

Diabetes mellitus, type 2 diabetes mellitus, non-insulindependent diabetes mellitus, saliva, blood, blood glucose

Abstract

Objective: To estimate the association of patient-related demographic, socioeconomic status, physical activity, stress, and dietary factors influencing the relationship between salivary and blood glucose levels in individuals with and without diabetes mellitus (DM).

Method: This cross-sectional study was conducted on 166 participants with and without DM. Saliva and blood were collected to estimate the glucose levels. Age, gender, occupation, socioeconomic and education level, BMI, hip to waist circumference, stress, dietary pattern, lifestyle, physical activity, family history of diabetes, and type of diabetes were recorded. The association of saliva to predict blood glucose levels was analysed using Spearman Rank Correlation and how these patient-related factors influence the correlation was estimated for future machine learning models. The difference in medians for various groups was calculated using the Mann-Whitney U Test or Kruskal Wallis Test.

Results: Blood glucose level is not significantly correlated to salivary glucose level. However, a statistically significant difference in the median blood glucose levels for diabetic participants (median = 137) compared to healthy controls (p-value < .05) was noted. The correlation between blood and salivary glucose was more positive for higher levels of glucose (Spearman 0.4). Age, alcohol consumption, monthly wages, intake of vegetables, and socioeconomic status affect blood glucose levels.

Conclusion: A correlation between saliva and blood glucose levels in healthy individuals was weak. Saliva should only be used as a monitoring tool rather than a diagnostic tool and is more reliable for patients with poorly controlled diabetes mellitus. 

Downloads

Download data is not yet available.

References

Z accardi F, Webb DR, Yates T, et al. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J.2016;92(1084):63-69. doi: 10.1136/postgradmedj-2015-133281. https://doi.org/10.1136/postgradmedj-2015-133281

Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20(7):1183-1197. doi:10.2337/diacare.20.7.1183. https://doi.org/10.2337/diacare.20.7.1183

Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr. 2019;13(2):1165-1172. doi: 10.1016/j.dsx.2019.01.040. https://doi.org/10.1016/j.dsx.2019.01.040

American Diabetes Association. Introduction: standards of medicalcare in diabetes-2022. Diabetes Care. 2022; 145(Suppl 1):S1-S2. doi:10.2337/dc22-Sint. https://doi.org/10.2337/dc22-Sint

Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843. https://doi.org/10.1016/j.diabres.2019.107843

Czupryniak L, Barkai L, Bolgarska S, et al. Self-monitoring of bloodglucose in diabetes: from evidence to clinical reality in Central and Eastern Europe-recommendations from the international Central-Eastern European expert group. Diabetes Technol Ther. 2014;16(7):460-475. doi: 10.1089/dia.2013.0302. https://doi.org/10.1089/dia.2013.0302

Ali SN , Dang-Tan T, Valentine WJ, et al. Evaluation of the clinical and economic burden of poor glycemic control associated with therapeutic inertia in patients with type 2 diabetes in the United States. Adv Ther. 2020;37(2):869-882. doi: 10.1007/s12325-019-01199-8. https://doi.org/10.1007/s12325-019-01199-8

Benjamin EM. Self-monitoring of blood glucose: the basics. Clin. Diabetes. 2002;20(1):45-47. https://doi.org/10.2337/diaclin.20.1.45

Ginsberg BH. Factors affecting blood glucose monitoring: sources of errors in measurement. J Diabetes Sci Technol. 2009;3(4):903-913.doi: 10.1177/193229680900300438. https://doi.org/10.1177/193229680900300438

Acar N, Ozcelik H, Cevik AA , et al. Low perfusion index affects the difference in glucose level between capillary and venous blood.Ther Clin Risk Manag. 2014;10:985-991. doi: 10.2147/TCtcRM.S73359. https://doi.org/10.2147/TCRM.S73359

Wei H, Lan F, He Q, et al. A comparison study between point-of-care testing systems and Central laboratory for determining blood glucose in venous blood. J Clin Lab Anal. 2017;31(3):e22051. doi:10.1002/jcla.22051. https://doi.org/10.1002/jcla.22051

Al Hayek AA , Robert AA , Babli S, et al. Fear of self-injecting and self-testing and the related risk factors in adolescents with type 1 diabetes: a cross-sectional study. Diabetes Ther. 2017;8(1):75-83. doi: 10.1007/s13300-016-0221-8. https://doi.org/10.1007/s13300-016-0221-8

Rosa LS , Mistro S, Oliveira MG, et al. Cost-effectiveness of point-of-care a1c tests in a primary care setting. Front Pharmacol.2020;11:588309. doi: 10.3389/fphar.2020.588309. https://doi.org/10.3389/fphar.2020.588309

Bain SC , Bekker Hansen B, Hunt B, et al. Evaluating the burden of poor glycemic control associated with therapeutic inertia in patients with type 2 diabetes in the UK. J Med Econ. 2020;23(1):98-105.doi: 10.1080/13696998.2019.1645018. https://doi.org/10.1080/13696998.2019.1645018

Snoek FJ, Mollema ED, Heine RJ, et al. Development and validation of the diabetes fear of injecting and self-testing questionnaire (D-FIS Q): first findings. Diabet Med. 1997;14(10):871-876. doi: 10.1002/(SICI )1096-9136(199710)14:10<871::AI D-DIA 457>3.0.CO;2-Y. https://doi.org/10.1002/(SICI)1096-9136(199710)14:10

Farhan SA , Shaikh ATAT, Zia M, et al. Prevalence and predictors of home use of glucometers in diabetic patients. Cureus.2017;9(6):e1330. doi: 10.7759/cureus.1330. https://doi.org/10.7759/cureus.1330

Tonyushkina K, Nichols JH. Glucose meters: a review of technical challenges to obtaining accurate results. J Diabetes Sci Technol. 2009;3(4):971-980. doi: 10.1177/193229680900300446. https://doi.org/10.1177/193229680900300446

Brown DL. Congenital bleeding disorders. Curr Probl PediatrAdolesc Health Care. 2005;35(2):38-62. doi: 10.1016/j.cppeds.2004.12.001. https://doi.org/10.1016/j.cppeds.2004.12.001

Panchbhai AS. Correlation of salivary glucose level with blood glucose level in diabetes mellitus. J Oral Maxillofac Res. 2012;3(3):e3.doi: 10.5037/jomr.2012.3303. https://doi.org/10.5037/jomr.2012.3303

Amer S, Yousuf M, Siddqiui PQ, et al. Salivary glucose concentrations in patients with diabetes mellitus-a minimally invasive technique for monitoring blood glucose levels. Pak J Pharm Sci. 2001;14(1):33-37.

Puttaswamy KA, Puttabudhi JH, Raju S. Correlation between salivary glucose and blood glucose and the implications of salivary factors on the oral health status in type 2 diabetes mellitus patients. J Int SocPrev Community Dent. 2017;7(1):28-33. doi: 10.4103/2231-0762.200703. https://doi.org/10.4103/2231-0762.200703

Mascarenhas P, Fatela B, Barahona I. Effect of diabetes mellitustype 2 on salivary glucose-a systematic review and meta-analysis of observational studies. PLOS One. 2014;9(7):e101706. doi: 10.1371/journal.pone.0101706. https://doi.org/10.1371/journal.pone.0101706

Kaufman E, Lamster IB. The diagnostic applications of saliva- a review. Crit Rev Oral Biol Med. 2002;13(2):197-212. doi: 10.1177/154411130201300209. https://doi.org/10.1177/154411130201300209

Yoshizawa JM, Schafer CA, Schafer JJ, et al. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev.2013;26(4):781-791. doi: 10.1128/CMR.00021-13. https://doi.org/10.1128/CMR.00021-13

Nagalaxmi V, Priyanka V. Can saliva be a marker for predicting type 1 diabetes mellitus? - a pilot study. JIAOMR. 2011;23:579-582. doi:10.5005/jp-journals-10011-1226. https://doi.org/10.5005/jp-journals-10011-1226

Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241-248.

Mrag M, Kassab A, Omezzine A, et al. Saliva diagnostic utility inpatients with type 2 diabetes: future standard method. J Med Biochem. 2020;39(2):140-148. doi: 10.2478/jomb-2019-0019. https://doi.org/10.2478/jomb-2019-0019

Lima-Aragão MV, de Oliveira-Junior Jde J, Maciel MC, et al. Salivary profile in diabetic patients: biochemical and immunological evaluation. BMC Res Notes. 2016;9(1):103. doi: 10.1186/s13104-016-1881-1. https://doi.org/10.1186/s13104-016-1881-1

Gupta S, Nayak MT, Sunitha JD, et al. Correlation of salivary glucose level with blood glucose level in diabetes mellitus. J Oral MaxillofacPathol. 2017;21(3):334-339. doi: 10.4103/jomfp.JOMFP_222_15. https://doi.org/10.4103/jomfp.JOMFP_222_15

Satish BN, Srikala P, Maharudrappa B, et al. Saliva: a tool in assess¬ing glucose levels in diabetes mellitus. J Int Oral Health.2014;6(2):114-117.

Golamari UMR, Natarajan MSS, Lakshmanan A, et al. Correlation between salivary glucose and blood glucose levels in diabetic and non-diabetic individuals. Int J Adv Med. 2019;6(4):1220-1225. doi:10.18203/2349-3933.ijam20193274. https://doi.org/10.18203/2349-3933.ijam20193274

Caixeta DC, Pennisi PRC, Moura DV, et al. Association of salivaryalpha-2-macroglobulin with glycemia and glycated hemoglobin intype 2 diabetes mellitus: a systematic review and meta-analysis study. Sao Paulo Med J. 2022;140(6):818-828. doi: 10.1590/1516-3180.2021.0816.R2.19052022. https://doi.org/10.1590/1516-3180.2021.0816.r2.19052022

Borg Andersson A, Birkhed D, Berntorp K, et al. Glucose concentration in parotid saliva after glucose/food intake in individuals with glucose intolerance and diabetes mellitus. Eur J Oral Sci. 1998;106(5):931-937. doi: 10.1046/j.0909-8836.1998.eos106505.x. https://doi.org/10.1046/j.0909-8836.1998.eos106505.x

Vasconcelos AC, Soares MS, Almeida PC, et al. Comparative studyof the concentration of salivary and blood glucose in type 2 diabetic patients. J Oral Sci. 2010;52(2):293-298. doi: 10.2334/josnusd.52.293. https://doi.org/10.2334/josnusd.52.293

Van Holle V, De Bourdeaudhuij I, Deforche B, et al. Assessment of physical activity in older belgian adults: validity and reliability ofan adapted interview version of the long international physical activity questionnaire (IPAQ-L). BMC Public Health. 2015;15(1):433. doi: 10.1186/s12889-015-1785-3. https://doi.org/10.1186/s12889-015-1785-3

England CY, Thompson JL, Jago R, et al. Development of a brief, reliable and valid diet assessment tool for impaired glucose tolerance and diabetes: the UK diabetes and diet questionnaire. Public Health Nutr. 2017;20(2):191-199. doi: 10.1017/S1368980016002275. https://doi.org/10.1017/S1368980016002275

Cohen S, Kamarck T, Mermelstein R. Aglobal measure of perceived stress. J Health Soc Behav. 1983;24(4):385-396. doi: 10.2307/2136404. https://doi.org/10.2307/2136404

Henson BS, Wong DT. Collection, storage, and processing of saliva samples for downstream molecular applications. Methods Mol Biol.2010;666:21-30. doi: 10.1007/978-1-60761-820-1_2. https://doi.org/10.1007/978-1-60761-820-1_2

Gomar-Vercher S, Simón-Soro A, Montiel-Company JM, et al. Stimulated and unstimulated saliva samples have significantly different bacterial profiles. PLOSOne. 2018;13(6):e0198021. doi:10.1371/journal.pone.0198021. https://doi.org/10.1371/journal.pone.0198021

Jurysta C, Bulur N, Oguzhan B, et al. Salivary glucose concentration and excretion in normal and diabetic subjects. J Biomed Biotechnol.2009;2009:430426-430426. doi: 10.1155/2009/430426. https://doi.org/10.1155/2009/430426

WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. Geneva: World Health Organization; 2010. 5 (Accessed on 10thFebruary, 2023). https://www.ncbi.nlm.nih.gov/books/NBK138661/?report=reader.

Abikshyeet P, Ramesh V, Oza N. Glucose estimation in the salivary secretion of diabetes mellitus patients. Diabetes Metab Syndr Obes. 2012;5:149-154. doi: 10.2147/DMSO.S32112. https://doi.org/10.2147/DMSO.S32112

Kumar A, Kumar T, Bhargava M, et al. Salivary and serum glucose levels in diabetes mellitus patients versus control - a randomised control trial. J Med Life. 2020;13(2):235-240. doi: 10.25122/jml-2020-0062. https://doi.org/10.25122/jml-2020-0062

Ragunathan H, Aswath N, Sarumathi T. Salivary glucose estimation: a noninvasive method. Indian J Dent Sci. 2019;11(1):25-27. doi:10.4103/IJDS.IJDS_78_18. https://doi.org/10.4103/IJDS.IJDS_78_18

K M P, Johnson P, Ganesh M, et al. Evaluation of salivary profile among adult type 2 diabetes mellitus patients in South India. J Clin Diagn Res. 2013;7(8):1592-1595. doi: 10.7860/JCDR/2013/5749.3232. https://doi.org/10.7860/JCDR/2013/5749.3232

Tiongco RE, Bituin A, Arceo E, et al. Salivary glucose as anon-invasive biomarker of type 2 diabetes mellitus. http://dx.doi.org/10.4317/jced.55009

Additional Files

Published

2024-03-26