Assessment of jaw bone mineral density, resorption rates, and oral health in patients with severe hemophilia: a case-control study

Authors

  • Gülin Acar Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Turkey
  • Alper Aktaş Oral and Maxillofacial Surgery, Hacettepe University, Ankara, Turkey

DOI:

https://doi.org/10.2340/aos.v83.40337

Keywords:

Alveolar resorption, bone mineral density, gingival indexes, hemophilia, oral hygiene

Abstract

Objective: Knowledge about oral hygiene, gingival bleeding, mineral density, and resorption of jaw bones in patients with hemophilia is limited. We evaluated the periodontal and bone status in such patients. 

Material and methods: Forty-eight patients with severe type A/B hemophilia and 49 age- and sex-matched controls were included. Assessments included simplified oral hygiene index (OHI-S), calculus index, debris index, gingival index (GI), gingival bleeding time index (GBTI), and decayed, missing, and filled teeth index (DMFTI). Bone resorption was evaluated using panoramic mandibular index (PMI), mental index (MI), and alveolar crest ratio (ACR). Mineral density in the condyle, angulus, and premolar areas was assessed using fractal analysis, with fractal dimensions denoted as condyle fractal dimension (CFD) for the condyle, angulus fractal dimension (AFD) for angulus, and premolar fractal dimension (PFD) for premolar region.

Results: The mean scores were DMFTI = 11.77, OHI-S = 2.44, PMI = 0.268, MI = 5.822, GI = 3.02, GBTI = 2.64, ACR = 2.06, CFD = 1.31, AFD = 1.31, and PFD = 1.17 in the hemophilia group and DMFTI = 11.449, PMI = 0.494, MI = 7.43, GI = 0.67, GBTI = 0.98, OHI-S = 1.45, ACR = 2.87, CFD = 1.35, AFD = 1.35, and PDF = 1.23 in the control group. Differences were significant for all parameters (p < 0.005) except for the DMFTI index. 

Conclusions: Because of poor oral hygiene, high bone resorption, and low bone mineral density in these patients, clinicians should consider potential bone changes when planning to treat these patients.

Downloads

Download data is not yet available.

References

Stonebraker JS, Bolton-Maggs PHB, Brooker M, et al. The World Federation of Hemophilia Annual Global Survey 1999–2018. Haemophil-ia. 2020;26(4):591–600. https://doi.org/10.1111/hae.14012 DOI: https://doi.org/10.1111/hae.14012

Sonis AL, Musselman RJ. Oral bleeding in classic hemophilia. Oral Surg Oral Med Oral Pathol. 1982;53(4):363–6. https://doi.org/10.1016/0030-4220(82)90436-4 DOI: https://doi.org/10.1016/0030-4220(82)90436-4

Larson EA, Larson HJ, Taylor JA, et al. Deletion of coagulation factor IX compromises bone mass and strength: murine model of hemophilia B (Christmas disease). Calcif Tissue Int. 2021;109(5):577–85. https://doi.org/10.1007/s00223-021-00872-x DOI: https://doi.org/10.1007/s00223-021-00872-x

Wallny TA, Scholz DT, Oldenburg J, et al. Osteoporosis in haemophilia – an underestimated comorbidity? Haemophilia. 2006;13(1):79–84. https//doi.org/10.1111/j.1365-2516.2006.01405.x DOI: https://doi.org/10.1111/j.1365-2516.2006.01405.x

Ehsanbakhsh A, Azarkar G, Ziaee M, et al. Prevalence of bone density reduction and its related factors in hemophilia patients in South Khorasan province in 2018. Galen Med J. 2020;9:e1711. https://doi.org/10.31661/gmj.v9i0.1711 DOI: https://doi.org/10.31661/gmj.v9i0.1711

Mansouritorghabeh H, Rezaieyazdi Z, Saadati N, et al. Reduced bone density in individuals with severe hemophilia B. Int J Rheum Dis. 2009;12(2):125–9. https://doi.org/10.1111/j.1756-185X.2009.01394.x DOI: https://doi.org/10.1111/j.1756-185X.2009.01394.x

Gebetsberger J, Schirmer M, Wurzer WJ, et al. Low bone mineral density in hemophiliacs. Front Med (Lausanne). 2022;9:794456. https://doi.org/10.3389/fmed.2022.794456 DOI: https://doi.org/10.3389/fmed.2022.794456

Gerstner G, Damiano ML, Tom A, et al. Prevalence and risk factors associated with decreased bone mineral density in patients with hae-mophilia. Haemophilia. 2009;15(2):559–65. https://doi.org/10.1111/j.1365-2516.2008.01963.x DOI: https://doi.org/10.1111/j.1365-2516.2008.01963.x

Zhang Y, Wang H, Zhu G, et al. F2r negatively regulates osteoclastogenesis through inhibiting the Akt and NFκB signaling pathways. Int J Biol Sci. 2020;16(9):1629–39. https://doi.org/10.7150/ijbs.41867 DOI: https://doi.org/10.7150/ijbs.41867

Czajkowska S, Rupa-Matysek J, Wojtasińska E, et al. Potential biochemical markers and radiomorphometric indices as predictors of re-duced bone mass in patients with congenital hemophilia. J Clin Med. 2022;11(12):3391. https://doi.org/10.3390/jcm11123391 DOI: https://doi.org/10.3390/jcm11123391

Greene JC, Vermillion JR. The simplified oral hygiene index. J Am Dent Assoc. 1964;68:7–13. https://doi.org/10.14219/jada.archive.1964.0034 DOI: https://doi.org/10.14219/jada.archive.1964.0034

Löe H. The gingival index, the plaque index and the retention index Systems. J Periodontol. 1967;38(6):610–6. https://doi.org/10.1902/jop.1967.38.6.610 DOI: https://doi.org/10.1902/jop.1967.38.6.610

Nowicki D, Vogel RI, Melcer S, et al. The gingival bleeding time index. J Periodontol. 1981;52(5):260–2. https://doi.org/10.1902/jop.1981.52.5.260 DOI: https://doi.org/10.1902/jop.1981.52.5.260

Benson BW, Prihoda TJ, Glass BJ. Variations in adult cortical bone mass as measured by a panoramic mandibular index. Oral Surg Oral Med Oral Pathol. 1991;71(3):349–56. https://doi.org/10.1016/0030-4220(91)90314-3 DOI: https://doi.org/10.1016/0030-4220(91)90314-3

Wical KE, Swoope CC. Studies of residual ridge resorption. I. Use of panoramic radiographs for evaluation and classification of mandibular resorption. J Prosthet Dent. 1974;32(1):7–12. https://doi.org/10.1016/0022-3913(74)90093-6 DOI: https://doi.org/10.1016/0022-3913(74)90093-6

White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88(5):628–35. https://doi.org/10.1016/s1079-2104(99)70097-1 DOI: https://doi.org/10.1016/S1079-2104(99)70097-1

Boyd D, Kinirons M. Dental caries experience of children with haemophilia in Northern Ireland. Int J Paediatr Dent. 1997;7(3):149–53. https://doi.org/10.1046/j.1365-263x.1997.00231.x DOI: https://doi.org/10.1046/j.1365-263X.1997.00231.x

Parvaie P, Majd HS, Ziaee M, et al. Evaluation of gum health status in hemophilia patients in Birjand (a case-control study). Am J Blood Res. 2020;10:54.

Ziebolz D, Stühmer C, Hornecker E, et al. Oral health in adult patients with congenital coagulation disorders – a case control study. Hae-mophilia. 2011;17(3):527–31. https://doi.org/10.1111/j.1365-2516.2010.02443.x DOI: https://doi.org/10.1111/j.1365-2516.2010.02443.x

Othman NA, Sockalingam SN, Mahyuddin A. Oral health status in children and adolescents with haemophilia. Haemophilia. 2015;21(5):605–11. https://doi.org/10.1111/hae.12657 DOI: https://doi.org/10.1111/hae.12657

Czajkowska S, Rupa-Matysek J, Gil L, et al. Assessment of oral health and healthy habits in adult patients with congenital hemophilia. Eur J Dent. 2023;17(1):161–72. https://doi.org/10.1055/s-0042-1743156 DOI: https://doi.org/10.1055/s-0042-1743156

Mielnik-Błaszczak M. Evaluation of dentition status and oral hygiene in Polish children and adolescents with congenital haemorrhagic diatheses. Int J Paediatr Dent. 1999;9(2):99–103. https://doi.org/10.1046/j.1365-263x.1999.00112.x DOI: https://doi.org/10.1046/j.1365-263x.1999.00112.x

Azhar S, Yazdanie N, Muhammad N. Periodontal status and IOTN interventions among young hemophiliacs. Haemophilia. 2006;12(4):401–4. https://doi.org/10.1111/j.1365-2516.2006.01305.x. Erratum in: Haemophilia. 2006;12(5):559 DOI: https://doi.org/10.1111/j.1365-2516.2006.01305.x

Kumar M, Pai KM, Kurien A, et al. Oral hygiene and dentition status in children and adults with hemophilia: a case-control study. Spec Care Dentist. 2018;38(6):391–4. https://doi.org/10.1111/scd.12324 DOI: https://doi.org/10.1111/scd.12324

Fiorillo L, De Stefano R, Cervino G, et al. Oral and psychological alterations in haemophiliac patients. Biomedicines. 2019;7(2):33. https://doi.org/10.3390/biomedicines7020033 DOI: https://doi.org/10.3390/biomedicines7020033

Krüger S, Boettger MK, Hilberg T. Somatosensory profile of patients with haemophilia. Haemophilia. 2018;24(1):97–103. https://doi.org/10.1111/hae.13370 DOI: https://doi.org/10.1111/hae.13370

Zaliuniene R, Peciuliene V, Brukiene V, et al. Hemophilia and oral health. Stomatologija. 2014;16(4):127–31.

Zaliuniene R, Aleksejuniene J, Peciuliene V, et al. Dental health and disease in patients with haemophilia – a case-control study. Haemo-philia. 2014;20(3):e194–8. https://doi.org/10.1111/hae.12325 DOI: https://doi.org/10.1111/hae.12325

Messenger H, Kulkarni R, Recht M, et al. A retrospective analysis of the American Thrombosis and Hemostasis Network Dataset describ-ing outcomes of dental extractions in persons with hemophilia. J Clin Med. 2023;12(5):1839. https://doi.org/10.3390/jcm12051839 DOI: https://doi.org/10.3390/jcm12051839

Gallacher SJ, Deighan C, Wallace AM, et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med. 1994;87(3):181–6.

Iorio A, Fabbriciani G, Marcucci M, et al. Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost. 2010;103(3):596–603. https://doi.org/10.1160/TH09-09-0629 DOI: https://doi.org/10.1160/TH09-09-0629

Paschou SA, Anagnostis P, Karras S, et al. Bone mineral density in men and children with haemophilia A and B: a systematic review and meta-analysis. Osteoporos Int. 2014;25(10):2399–407. https://doi.org/10.1007/s00198-014-2773-7 DOI: https://doi.org/10.1007/s00198-014-2773-7

Christoforidis A, Economou M, Papadopoulou E, et al. Comparative study of dual energy X-ray absorptiometry and quantitative ultrasonog-raphy with the use of biochemical markers of bone turnover in boys with haemophilia. Haemophilia. 2011;17(1):e217–22. https://doi.org/10.1111/j.1365-2516.2010.02385.x DOI: https://doi.org/10.1111/j.1365-2516.2010.02385.x

Anagnostis P, Vakalopoulou S, Christoulas D, et al. The role of sclerostin/dickkopf-1 and receptor activator of nuclear factor kB lig-and/osteoprotegerin signalling pathways in the development of osteoporosis in patients with haemophilia A and B: a cross-sectional study. Haemophilia. 2018;24(2):316–22. https://doi.org/10.1111/hae.13384 DOI: https://doi.org/10.1111/hae.13384

Hayek E, Aoun G, Bassit R, et al. Correlating radiographic fractal analysis at implant recipient sites with primary implant stability: an in vivo preliminary study. Cureus. 2020;12(1):e6539. https://doi.org/10.7759/cureus.6539 DOI: https://doi.org/10.7759/cureus.6539

Arsan B, Köse TE, Çene E, et al. Assessment of the trabecular structure of mandibular condyles in patients with temporomandibular disor-ders using fractal analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(3):382–91. https://doi.org/10.1016/j.oooo.2016.11.005 DOI: https://doi.org/10.1016/j.oooo.2016.11.005

Yagmur B, Tercanli-Alkis H, Tayfun-Kupesiz F, et al. Alterations of panoramic radiomorphometric indices in children and adolescents with beta-thalassemia major: a fractal analysis study. Med Oral Patol Oral Cir Bucal. 2022;27(1):e10–7. https://doi.org/10.4317/medoral.24784 DOI: https://doi.org/10.4317/medoral.24784

Published

2024-04-10