Digital workflow feasibility for the fabrication of intraoral maxillofacial prosthetics after surgical resection: a systematic literature review
DOI:
https://doi.org/10.2340/aos.v83.40870Keywords:
Maxillofacial prosthetics, digital workflow, intraoral scanning, CBCT, CAD-CAMAbstract
Objectives: To evaluate the current evidence of digital workflow feasibility based on the data acquisition methods and the software tools used to fabricate intraoral prostheses for patients with partial or total maxillary and mandibular defects.
Materials and methods: An electronic search was performed in PubMed, SCOPUS, and Web of Science using a combination of relevant keywords: digital workflow, digital designing, computer-assisted design-computer aided manufacturing, 3D printing, maxillectomy, and mandibulectomy. The Joanna Briggs Institute Critical Appraisal Tool was used to assess the quality of evidence in the studies reviewed.
Results: From a total of 542 references, 33 articles were selected, including 25 on maxillary prostheses and 8 on mandibular prostheses. The use of digital workflows was limited to one or two steps of the fabrication of the prostheses, and only four studies described a complete digital workflow. The most preferred method for data acquisition was intraoral scanning with or without a cone beam computed tomography combination.
Conclusion: Currently, the fabrication process of maxillofacial prostheses requires combining digital and conventional methods. Simplifying the data acquisition methods and providing user-friendly and affordable software may encourage clinicians to use the digital workflow more frequently for patients requiring maxillofacial prostheses.
Downloads
References
Elbashti ME, Sumita YI, Kelimu S, et al. Application of digital technologies in maxillofacial prosthetics literature: a 10-year observation of five selected prosthodontics journals. Int J Prosthodont. 2019;32(1):45–50. https://doi.org/10.11607/ijp.5932. DOI: https://doi.org/10.11607/ijp.5932
Ye H, Ma Q, Hou Y, et al. Generation and evaluation of 3D digital casts of maxillary defects based on multisource data registration: a pilot clinical study. J Prosthet Dent. 2017;118(6):790–795. https://doi.org/10.1016/j.prosdent.2017.01.014. DOI: https://doi.org/10.1016/j.prosdent.2017.01.014
Jiang FF, Hou Y, Lu L, et al. Functional evaluation of a CAD/CAM prosthesis for immediate defect repair after total maxillectomy: a case series of 18 patients with maxillary sinus cancer. J Esthet Restor Dent. 2015;27(Suppl 1):S80–S89. https://doi.org/10.1111/jerd.12117. DOI: https://doi.org/10.1111/jerd.12117
Farook TH, Mousa MA, Jamayet NB. Method to control tongue position and open source image segmentation for cone-beam computed tomography of patients with large palatal defect to facilitate digital obturator design. J Oral Maxillofac Surg Med Pathol. 2020;32(1):61–64. https://doi.org/10.1016/j.ajoms.2019.09.009. DOI: https://doi.org/10.1016/j.ajoms.2019.09.009
Jiao T, Zhu C, Dong X, Gu X. Rehabilitation of maxillectomy defects with obturator prostheses fabricated using computer-aided design and rapid prototyping: a pilot study. Int J Prosthodont. 2014;27(5):480–486. https://doi.org/10.11607/ijp.3733. DOI: https://doi.org/10.11607/ijp.3733
Benic GI, Sancho-Puchades M, Jung RE, et al. In vitro assessment of artifacts induced by titanium dental implants in cone beam computed tomography. Clin Oral Implants Res. 2013;24(4):378–383. https://doi.org/10.1111/clr.12048. DOI: https://doi.org/10.1111/clr.12048
Lo Russo L, Caradonna G, Troiano G, et al. Three-dimensional differences between intraoral scans and conventional impressions of edentulous jaws: a clinical study. J Prosthet Dent. 2020;123(2):264–268. https://doi.org/10.1016/j.prosdent.2019.04.004. DOI: https://doi.org/10.1016/j.prosdent.2019.04.004
Manisha J, Srivastava G, Das SS, et al. Accuracy of single-unit ceramic crown fabrication after digital versus conventional impressions: a systematic review and meta-analysis. J Indian Prosthodont Soc. 2023;23:105–111. https://doi.org/10.4103/jips.jips_534_22. DOI: https://doi.org/10.4103/jips.jips_534_22
Srivastava G, Padhiary SK, Mohanty N, et al. Accuracy of intraoral scanner for recording completely edentulous arches – a systematic review. Dent J (Basel). 2023;11(10):241. https://doi.org/10.3390/dj11100241. DOI: https://doi.org/10.3390/dj11100241
Kattadiyil MT, Mursic Z, AlRumaih H, et al. Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent. 2014;112(3):444–448. https://doi.org/10.1016/j.prosdent.2014.03.022. DOI: https://doi.org/10.1016/j.prosdent.2014.03.022
Zhang M, Hattori M, Elbashti ME, et al. Feasibility of intraoral scanning for data acquisition of maxillectomy defects. Int J Prosthodont. 2020;33(4):452–456. https://doi.org/10.11607/ijp.6763. DOI: https://doi.org/10.11607/ijp.6763
Farook TH, Jamayet NB, Abdullah JY, et al. Designing 3D prosthetic templates for maxillofacial defect rehabilitation: a comparative analysis of different virtual workflows. Comput Biol Med. 2020;118:103646. https://doi.org/10.1016/j.compbiomed.2020.103646. DOI: https://doi.org/10.1016/j.compbiomed.2020.103646
Alharbi N, Wismeijer D, Osman RB. Additive manufacturing techniques in prosthodontics: where do we currently stand? A critical review. Int J Prosthodont. 2017;30(5):474–484. https://doi.org/10.11607/ijp.5079. DOI: https://doi.org/10.11607/ijp.5079
Allen RJ, Nelson JA, Polanco TO, et al. Short-term outcomes following virtual surgery assisted immediate dental implant placement (IDIP) in free fibula flaps for oncologic mandibular reconstruction. Plast Reconstr Surg. 2020;146(6):768e–776e. https://doi.org/10.1097/PRS.0000000000007352. DOI: https://doi.org/10.1097/PRS.0000000000007352
Koyama S, Sato N, Mito T, et al. Hermeticity of a hollow obturator model using CAD and rapid prototyping technologies. J Prosthet Dent. 2020;124(1):123–127. https://doi.org/10.1016/j.prosdent.2019.09.028. DOI: https://doi.org/10.1016/j.prosdent.2019.09.028
De Groot RJ, Rieger JM, Rosenberg AJWP, et al. A pilot study of masticatory function after maxillectomy comparing rehabilitation with an obturator prosthesis and reconstruction with a digitally planned, prefabricated, free, vascularized fibula flap. J Prosthet Dent. 2020;124(5):616–622. https://doi.org/10.1016/j.prosdent.2019.06.005. DOI: https://doi.org/10.1016/j.prosdent.2019.06.005
Revoredo ECV, Galembeck A, Ponzi EAC, et al. Palatal obturator designed by 3-dimensional prototyping for a patient with a large ameloblastoma: a case report. Gen Dent. 2018;66(5):e12–e17.
Weitz J, Bauer FJM, Hapfelmeier A, et al. Accuracy of mandibular reconstruction by three-dimensional guided vascularised fibular free flap after segmental mandibulectomy. Br J Oral Maxillofac Surg. 2016;54(5):506–510. https://doi.org/10.1016/j.bjoms.2016.01.029. DOI: https://doi.org/10.1016/j.bjoms.2016.01.029
Michelinakis G. The use of cone beam computed tomography and three dimensional printing technology in the restoration of a maxillectomy patient using a dental implant retained obturator. J Indian Prosthodont Soc. 2017;17(4):406–411. https://doi.org/10.4103/jips.jips_106_17. DOI: https://doi.org/10.4103/jips.jips_106_17
Yoon HI, Han JS. Prosthetic rehabilitation with an implant-supported fixed prosthesis using computer-aided design and computer-aided manufacturing dental technology for a patient with a mandibulectomy: a clinical report. J Prosthet Dent. 2016;115(2):133–136. https://doi.org/10.1016/j.prosdent.2015.07.019. DOI: https://doi.org/10.1016/j.prosdent.2015.07.019
Noh K, Pae A, Lee JW, Kwon YD. Fabricating a tooth- and implant-supported maxillary obturator for a patient after maxillectomy with computer-guided surgery and CAD/CAM technology: a clinical report. J Prosthet Dent. 2016;115(5):637–642. https://doi.org/10.1016/j.prosdent.2015.10.015. DOI: https://doi.org/10.1016/j.prosdent.2015.10.015
Elbashti ME, Hattori M, Patzelt SB, et al. Precision and trueness of computerized optical impressions in maxillectomy defects: an in vitro 3D comparison. Int J Prosthodont. 2019;6;32(3):289–292. https://doi.org/10.11607/ijp.6077. DOI: https://doi.org/10.11607/ijp.6077
Ding L, Chen X, Zhang J, et al. Digital fabrication of a maxillary obturator prosthesis by using a 3-dimensionally–printed polyetheretherketone framework. J Prosthet Dent 2023;129(1):230–233. https://doi.org/10.1016/j.prosdent.2021.04.002. DOI: https://doi.org/10.1016/j.prosdent.2021.04.002
Murat S, Batak B. Fabrication of a 3-dimensionally printed definitive cast for an obturator prosthesis by merging intraoral scan image with cone beam computed tomography data: a clinical report. J Prosthet Dent. 2021;126(2):256.e1–256.e4. https://doi.org/10.1016/j.prosdent.2020.09.031. DOI: https://doi.org/10.1016/j.prosdent.2020.09.031
Krämer Fernandez P, Kuscu E, Weise H, et al. Rapid additive manufacturing of an obturator prosthesis with the use of an intraoral scanner: a dental technique. J Prosthet Dent. 2022;127(1):189–193. https://doi.org/10.1016/j.prosdent.2020.07.033. DOI: https://doi.org/10.1016/j.prosdent.2020.07.033
Ye H, Wang Z, Sun Y, et al. Fully digital workflow for the design and manufacture of prostheses for maxillectomy defects. J Prosthet Dent. 2021;126(2):257–261. https://doi.org/10.1016/j.prosdent.2020.05.026. DOI: https://doi.org/10.1016/j.prosdent.2020.05.026
Tasopoulos T, Chatziemmanouil D, Kouveliotis G, et al. PEEK maxillary obturator prosthesis fabrication using intraoral scanning, 3D printing, and CAD/CAM. Int J Prosthodont. 2020;33(3):333–340. https://doi.org/10.11607/ijp.6575. DOI: https://doi.org/10.11607/ijp.6575
Brucoli M, Boffano P, Pezzana A, et al. The use of optical scanner for the fabrication of maxillary obturator prostheses. Oral Maxillofac Surg. 2020;24(2):157–161. https://doi.org/10.1007/s10006-020-00836-9. DOI: https://doi.org/10.1007/s10006-020-00836-9
Wang Y, Yang X, Gan R, et al. Digital planning workflow for partial maxillectomy using an osteotomy template and immediate rehabilitation of maxillary Brown II defects with prosthesis. J Oral Rehabil. 2019;46(12):1133–1141. https://doi.org/10.1111/joor.12850. DOI: https://doi.org/10.1111/joor.12850
Tasopoulos T, Chatziemmanouil D, Karaiskou G, et al. Fabrication of a 3D-printed interim obturator prosthesis: a contemporary approach. J Prosthet Dent. 2019;121(6):960–963. https://doi.org/10.1016/j.prosdent.2018.10.004. DOI: https://doi.org/10.1016/j.prosdent.2018.10.004
Soltanzadeh P, Su JM, Habibabadi SR, et al. Obturator fabrication incorporating computer-aided design and 3-dimensional printing technology: a clinical report. J Prosthet Dent. 2019;121(4):694–697. https://doi.org/10.1016/j.prosdent.2018.06.019. DOI: https://doi.org/10.1016/j.prosdent.2018.06.019
Palin CL, Huryn JM, Golden M, et al. Three-dimensional printed definitive cast for a silicone obturator prosthesis: a clinical report. J Prosthet Dent. 2019;121(2):353–357. https://doi.org/10.1016/j.prosdent.2018.04.017. DOI: https://doi.org/10.1016/j.prosdent.2018.04.017
Michelinakis G, Pavlakis M, Igoumenakis D. Rehabilitation of a maxillectomy patient using intraoral scanning impression technology and a computer-aided design/computer-aided manufacturing fabricated obturator prosthesis: a clinical report. J Indian Prosthodont Soc. 2018;18(3):282–287. https://doi.org/10.4103/jips.jips_14_18. DOI: https://doi.org/10.4103/jips.jips_14_18
Murat S, Gürbüz A, Kamburoğlu K. Fabrication of obturator prosthesis by fusing CBCT and digital impression data. Int J Comput Dent. 2018;21(4):335–344.
Kortes J, Dehnad H, Kotte ANT, et al. A novel digital workflow to manufacture personalized three-dimensional-printed hollow surgical obturators after maxillectomy. Int J Oral Maxillofac Surg. 2018;47(9):1214–1218. https://doi.org/10.1016/j.ijom.2018.03.015. DOI: https://doi.org/10.1016/j.ijom.2018.03.015
Bartellas M, Tibbo J, Angel D, et al. Three-dimensional printing: a novel approach to the creation of obturator prostheses following palatal resection for malignant palate tumors. J Craniofac Surg. 2018;29(1):e12–e15. https://doi.org/10.1097/SCS.0000000000003987. DOI: https://doi.org/10.1097/SCS.0000000000003987
Tasopoulos T, Kouveliotis G, Polyzois G, et al. Fabrication of a 3D printing definitive obturator prosthesis: a clinical report. Acta Stomatol Croat. 201;51(1):53–58. https://doi.org/10.15644/asc51/1/7. DOI: https://doi.org/10.15644/asc51/1/7
Rodney J, Chicchon I. Digital design and fabrication of surgical obturators based only on preoperative computed tomography data. Int J Prosthodont. 2017;30(2):111–112. https://doi.org/10.11607/ijp.5066. DOI: https://doi.org/10.11607/ijp.5066
Kim JE, Kim NH, Shim JS. Fabrication of a complete, removable dental prosthesis from a digital intraoral impression for a patient with an excessively tight reconstructed lip after oral cancer treatment: a clinical report. J Prosthet Dent. 2017;117(2):205–208. https://doi.org/10.1016/j.prosdent.2016.07.001. DOI: https://doi.org/10.1016/j.prosdent.2016.07.001
Park JH, Lee KS, Lee JY, Shin SW. Fabricating a maxillary obturator using an intraoral digital impression: a case history report. Int J Prosthodont. 2017;30(3):266–268. https://doi.org/10.11607/ijp.5213. DOI: https://doi.org/10.11607/ijp.5213
Elbashti ME, Sumita YI, Hattori M, et al. The role of digitization in the rapid reproduction of an obturator in a frail elderly patient. Int J Prosthodont. 2016;29(6):592–594. https://doi.org/10.11607/ijp.4932. DOI: https://doi.org/10.11607/ijp.4932
Londono J, Abreu A, Baker PS, et al. Fabrication of a definitive obturator from a 3D cast with a chairside digital scanner for a patient with severe gag reflex: a clinical report. J Prosthet Dent. 2015;114(5):735–738. https://doi.org/10.1016/j.prosdent.2015.01.019. DOI: https://doi.org/10.1016/j.prosdent.2015.01.019
Kim MS, Lee JY, Shin SW. Fabricating an obturator using rapid prototyping to design the framework: a case report. Int J Prosthodont. 2014;27(5):439–441. https://doi.org/10.11607/ijp.3838. DOI: https://doi.org/10.11607/ijp.3838
Williams FC, Hammer DA, Wentland TR, et al. Immediate teeth in fibulas: planning and digital workflow with point-of-care 3D printing. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2020;78(8):1320–1327. https://doi.org/10.1016/j.joms.2020.04.006. DOI: https://doi.org/10.1016/j.joms.2020.04.006
Ren W, Gao L, Li S, et al. Virtual planning and 3D printing modeling for mandibular reconstruction with fibula free flap. Med Oral Patol Oral Cir Bucal. 2018;23(3):e359–e366. https://doi.org/10.4317/medoral.22295. DOI: https://doi.org/10.4317/medoral.22295
Oh SM, Kim JW, Choi SY, et al. Full-mouth rehabilitation with bone-level implant guide and monolithic zirconia prosthesis for fibular free flap reconstruction: a case history report. Int J Prosthodont. 2018;31(6):573–576. https://doi.org/10.11607/ijp.5658. DOI: https://doi.org/10.11607/ijp.5658
Chuka R, Abdullah W, Rieger J, et al. Implant utilization and time to prosthetic rehabilitation in conventional and advanced fibular free flap reconstruction of the maxilla and mandible. Int J Prosthodont. 2017;30(3):289–294. https://doi.org/10.11607/ijp.5161. DOI: https://doi.org/10.11607/ijp.5161
Zhang L, Liu Z, Li B, et al. Evaluation of computer-assisted mandibular reconstruction with vascularized fibular flap compared to conventional surgery. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121(2):139–148. https://doi.org/10.1016/j.oooo.2015.10.005. DOI: https://doi.org/10.1016/j.oooo.2015.10.005
Schepers RH, Raghoebar GM, Vissink A, et al. Accuracy of fibula reconstruction using patient-specific CAD/CAM reconstruction plates and dental implants: a new modality for functional reconstruction of mandibular defects. J Cranio-Maxillofac Surg. 2015;43(5):649–657. https://doi.org/10.1016/j.jcms.2015.03.015. DOI: https://doi.org/10.1016/j.jcms.2015.03.015
Freudlsperger C, Bodem JP, Engel E, et al. Mandibular reconstruction with a prefabricated free vascularized fibula and implant-supported prosthesis based on fully three-dimensional virtual planning. J Craniofac Surg. 2014;25(3):980–982. https://doi.org/10.1097/SCS.0000000000000551. DOI: https://doi.org/10.1097/SCS.0000000000000551
Schepers RH, Raghoebar GM, Vissink A, et al. Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction. Head Neck. 2013;35(4):E109–E114. https://doi.org/10.1002/hed.21922. DOI: https://doi.org/10.1002/hed.21922
Pucci R, Weyh A, Smotherman C, et al. Accuracy of virtual planned surgery versus conventional free-hand surgery for reconstruction of the mandible with osteocutaneous free flaps. Int J Oral Maxillofac Surg. 2020;49(9):1153–1161. https://doi.org/10.1016/j.ijom.2020.02.018. DOI: https://doi.org/10.1016/j.ijom.2020.02.018
Munn Z, Barker TH, Moola S, et al. Methodological quality of case series studies: an introduction to the JBI critical appraisal tool. JBI Evidence Synthesis. 2020;18(10):2127–2133. https://doi.org/10.11124/JBISRIR-D-19-00099. DOI: https://doi.org/10.11124/JBISRIR-D-19-00099
Elbashti ME, Hattori M, Patzelt SB, et al. Feasibility and accuracy of digitizing edentulous maxillectomy defects: a comparative study. Int J Prosthodont. 2017;30(2):147–149. https://doi.org/10.11607/ijp.5095. DOI: https://doi.org/10.11607/ijp.5095
Williams RJ, Bibb R, Rafik T. A technique for fabricating patterns for removable partial denture frameworks using digitized casts and electronic surveying. J Prosthet Dent. 2004;91(1):85–88. https://doi.org/10.1016/j.prosdent.2003.10.002. DOI: https://doi.org/10.1016/j.prosdent.2003.10.002
Tarsitano A, Mazzoni S, Cipriani R, et al. The CAD-CAM technique for mandibular reconstruction: an 18 patients oncological case-series. J Craniomaxillofac Surg. 2014;42(7):1460–1464. https://doi.org/10.1016/j.jcms.2014.04.011. DOI: https://doi.org/10.1016/j.jcms.2014.04.011
Published
Issue
Section
License
Copyright (c) 2024 Gunjan Srivastava, Subrat Kumar Padhiary , Neeta Mohanty, Pravinkumar G. Patil, Saurav Panda, Carlos Cobo-Vazquez, Gülce Çakmak, Pedro Molinero-Mourelle
This work is licensed under a Creative Commons Attribution 4.0 International License.