A retrospective study on the influence of inclination of cusp on implant marginal bone height in patients with periodontal disease

Authors

  • Runsheng Pei Department of prosthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Cong Xiao Department of Orthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Jian Chen The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Hao Liu Department of prosthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Jinting Chen Department of prosthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Haixia Ge Department of prosthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Nana Cai Department of prosthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Yihua Wu Department of prosthodontics, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China
  • Yan Zhou Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, Jiangsu province, P.R. China

DOI:

https://doi.org/10.2340/aos.v83.41226

Keywords:

Inclination of cusp, periodontal disease, marginal bone height, occlusal design

Abstract

Purpose: To investigate the correlation between the marginal bone height of implants in the posterior maxilla of patients with periodontal disease and the inclination of cusp, providing a theoretical basis for the occlusal design of implant restorations in such patients. 

Methods: A total of 80 patients with periodontal disease who underwent implant restoration in the posterior maxilla (55 men and 25 women; mean age 56.66 ± 12.70 years) were selected, with a total of 80 implant restorations (one implant restoration per patient). In addition to recording the main research factor of the inclination of cusp, general patient information, implant characteristics and restoration characteristics were taken, and retrospective analysis of the case data and imaging data of the 80 patients from over 3 years was conducted. Cone beam computed tomography was performed preoperatively and 3 years after implant loading to measure and calculate the marginal bone height of the implants using the One Volume Viewer software. Correlation analysis was performed to determine the relationship between the inclination of the cusp and marginal bone height. 

Results: There was a positive correlation between the inclination of cusp and the marginal bone height of the implants, with a correlation coefficient of 0.661 (p < 0.001); the diameter of the implants, implant type and restoration type were negatively correlated with the marginal bone height of the implants, with correlation coefficients of −0.364 (p = 0.001), −0.232 (p = 0.038) and −0.298 (p = 0.007), respectively. 

Conclusion: When designing the occlusion of implant restorations in the posterior maxilla of patients with periodontal disease, it is advisable to appropriately reduce the restoration’s inclination of cusp.

Downloads

Download data is not yet available.

References

Coli P, Jemt T. Are marginal bone level changes around dental implants due to infection? Clin Implant Dent Relat Res. 2021;23(2):170–7. https://doi.org/10.1111/cid.12971 DOI: https://doi.org/10.1111/cid.12971

Alvarez-Arenal A, Gonzalez-Gonzalez I, deLlanos-Lanchares H, Brizuela-Velasco A, Martin-Fernandez E, Ellacuria-Echebarria J. Influence of implant positions and occlusal forces on peri-implant bone stress in mandibular two-implant overdentures: a 3-dimensional finite element analysis. J Oral Implantol. 2017;43(6):419–28. https://doi.org/10.1563/aaid-joi-D-17-00170 DOI: https://doi.org/10.1563/aaid-joi-D-17-00170

Coli P, Jemt T. On marginal bone level changes around dental implants. Clin Implant Dent Relat Res. 2021;23:159–69. https://doi.org/10.1111/cid.12970 DOI: https://doi.org/10.1111/cid.12970

Melsen B, Lang NP. Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Implants Res. 2001;12:144–52. https://doi.org/10.1034/j.1600-0501.2001.012002144.x DOI: https://doi.org/10.1034/j.1600-0501.2001.012002144.x

Isidor F. Influence of forces on periimplant bone. Clin Oral Implants Res. 2006;17:8–18. https://doi.org/10.1111/j.1600-0501.2006.01360.x DOI: https://doi.org/10.1111/j.1600-0501.2006.01360.x

Chang M, Chronopoulos V, Mattheos N. Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review. J Investig Clin Dent. 2013;4:142–50. https://doi.org/10.1111/jicd.12036 DOI: https://doi.org/10.1111/jicd.12036

Chambrone L, Chambrone LA, Lima LA. Effects of occlusal overload on periimplant tissue health: a systematic review of animal-model studies. J Periodontol. 2010;81:1367–78. https://doi.org/10.1902/jop.2010.100176 DOI: https://doi.org/10.1902/jop.2010.100176

Berglundh T, Abrahamsson I, Lindhe J. Bone reactions to longstanding functional load at implants: an experimental study in dogs. J Clin Periodontol. 2005;32:925–32. https://doi.org/10.1111/j.1600-051X.2005.00747.x DOI: https://doi.org/10.1111/j.1600-051X.2005.00747.x

Piattelli A, Corigliano M, Scarano A, Costigliola G, Paolantonio M. Immediate loading of titanium plasma-sprayed implants: an histologic analysis in monkeys. J Periodontol. 1998;69:321–7. https://doi.org/10.1902/jop.1998.69.3.321 DOI: https://doi.org/10.1902/jop.1998.69.3.321

Piattelli A, Corigliano M, Scarano A, Quaranta M. Bone reactions to earlyocclusal loading of two-stage titanium plasma-sprayed implants: a pilot study in monkeys. Int J Periodontics Restorative Dent.1997;17:162–9. https://doi.org/10.1016/0142-9612(96)87288-7 DOI: https://doi.org/10.1016/0142-9612(96)87288-7

Piattelli A, Ruggeri A, Franchi M, Romasco N, Trisi P. A histologic and histomorphometric study of bone reactions to unloaded and loaded non- submerged single implants in monkeys: a pilot study. J Oral Implantol.1993;19:314–20.

Heitz-Mayfield LJ, Schmid B, Weigel C, Gerber S, Bosshardt DD, Jönsson J, et al. Does excessive occlusal load affect osseointegration? An experimental study in the dog. Clin Oral Implants Res. 2004;15:259–68. https://doi.org/10.1111/j.1600-0501.2004.01019.x DOI: https://doi.org/10.1111/j.1600-0501.2004.01019.x

Freeman JV, Higgins AY, Wang Y, Du C, Friedman DJ, Daimee UA, et al. Antithrombotic therapy after left atrial appendage occlusion in patients with atrial fibrillation. J Am Coll Cardiol. 2022;79(18):1785–98. https://doi.org/10.1016/j.jacc.2022.02.047 DOI: https://doi.org/10.1016/j.jacc.2022.02.047

Topcu Ersöz MB, Mumcu E. Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study. J Adv Prosthodont. 2022;14(6):346–59. https://doi.org/10.4047/jap.2022.14.6.346 DOI: https://doi.org/10.4047/jap.2022.14.6.346

Wang Z, Teng Y, Li DC, Liu F, Guo Z, Sun Z, et al. A new custom-made artificial articular cartilage of femoral condyle based on rapid prototyping technique: a case report. Zhonghua Wai Ke Za Zhi. 2004;42:746–9.

Sheridan RA, Decker AM, Plonka AB, Wang HL. The role of occlusion in implant therapy: a comprehensive updated review. Implant Dent. 2016;25:829–38. https://doi.org/10.1097/ID.0000000000000488 DOI: https://doi.org/10.1097/ID.0000000000000488

Brune A, Stiesch M, Eisenburger M, Greuling A. The effect of different occlusal contact situations on peri-implant bone stress – a contact finite element analysis of indirect axial loading. Mater Sci Eng C Mater Biol Appl. 2019;99:367–73. https://doi.org/10.1016/j.msec.2019.01.104 DOI: https://doi.org/10.1016/j.msec.2019.01.104

Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants. 1993;8:19–31.

Rungsiyakull C, Rungsiyakull P, Li Q, Li W, Swain M. Effects of occlusal inclination and loading on mandibular bone remodeling: a finite element study. Int J Oral Maxillofac Implants. 2011;26:527–37.

Jiang BQ, Lan J, Huang HY, Liang J, Ma XN, Huo LD, et al. A clinical study on the effectiveness of implant supported dental restoration in patients with chronic periodontal diseases. Int J Oral Maxillofac Surg. 2013;42:256–9. https://doi.org/10.1016/j.ijom.2012.08.001 DOI: https://doi.org/10.1016/j.ijom.2012.08.001

Klokkevold PR, Han TJ. How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? Int J Oral Maxillofac Implants. 2007;22:173–202.

Cheng Y, Xiao C, Zhu Y, Chen Q, Zhang L, Zhang Y, et al. Three-year observations on the effect of different cusp inclinations on the restoration of short maxillary first molar implants: a randomized controlled trial. Front Physiol. 2023;13:992800. https://doi.org/10.3389/fphys.2022.992800 DOI: https://doi.org/10.3389/fphys.2022.992800

Kozlovsky A, Tal H, Laufer BZ, Leshem R, Rohrer MD, Weinreb M, et al. Impact of implant overloading on the peri-implant bone in inflamed and non-inflamed peri-implant mucosa. Clin Oral Implants Res. 2007;18:601–10. https://doi.org/10.1111/j.1600-0501.2007.01374.x DOI: https://doi.org/10.1111/j.1600-0501.2007.01374.x

H.mmerle CHF, Cordaro L, Alccayhuaman KAA, Botticelli D, Esposito M, Colomina LE, et al. Biomechanical aspects: summary and consensus statements of group 4. The 5th EAO Consensus Conference 2018. Clin Oral Implants Res. 2018;29:326–31. https://doi.org/10.1111/clr.13284 DOI: https://doi.org/10.1111/clr.13284

Moriwaki H, Yamaguchi S, Nakano T, Yamanishi Y, Imazato S, Yatani H. Influence of implant length and diameter, bicortical anchorage, and sinus augmentation on bone stress distribution: three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2016;31:e84–91. https://doi.org/10.11607/jomi.4217 DOI: https://doi.org/10.11607/jomi.4217

Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;100:422–31. https://doi.org/10.1016/S0022-3913(08)60259-0 DOI: https://doi.org/10.1016/S0022-3913(08)60259-0

Huang HL, Fuh LJ, Ko CC, Hsu JT, Chen CC. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2009;24:455–62.

Jang HJ, Kwon SY, Kim SH, Park YG, Kim SJ. Effects of washer on the stress distribution of mini-implant. Angle Orthod. 2012;82:137–44. https://doi.org/10.2319/021411-107.1 DOI: https://doi.org/10.2319/021411-107.1

Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent. 2006;26:9–17.

Klokkevold PR, Johnson P, Dadgostari S, Caputo A, Davies JE, Nishimura RD. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin Oral Implants Res. 2001;12:350–7. https://doi.org/10.1034/j.1600-0501.2001.012004350.x DOI: https://doi.org/10.1034/j.1600-0501.2001.012004350.x

Calvo-Guirado JL, Ortiz-Ruiz AJ, L.pez-Mar. L, Delgado-Ruiz R, Maté-Sánchez J, Bravo Gonzalez LA. Immediate maxillary restoration of single-tooth implants using platform switching for crestal bone preservation: a 12-month study. Int J Oral Maxillofac Implants. 2009;24:275–81.

Papaspyridakos P, Chen CJ, Chuang SK, Weber HP, Gallucci GO. A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. Int J Oral Maxillofac Implants. 2012;27(1):102–10.

Meijer HJA, Boven C, Delli K, Raghoebar GM. Is there an effect of crown-to-implant ratio on implant treatment outcomes? A systematic review. Clin Oral Implants Res. 2018;29:243–52. https://doi.org/10.1111/clr.13338 DOI: https://doi.org/10.1111/clr.13338

Published

2024-09-12