The effect of citric acid on mineralisation and vascular endothelial growth factor secretion from apical papilla stem cells
DOI:
https://doi.org/10.2340/aos.v83.42026Keywords:
Citric acid, VEGF, regenerative endodontics, stem cells from apical papilla, immature teethAbstract
Objective: To investigate the influence of citric acid on the osteogenic and angiogenic potential of stem cells from apical papillae (SCAPs).
Materials and methods: Stem cells from apical papillae were isolated from freshly extracted third permanent molars. These cells were treated with 20 and 100 μM citric acid. Alizarin red staining was used to evaluate mineral deposition. The secreted levels of vascular endothelial growth factor (VEGF) were assessed by ELISA on days 18, 24 and 28. Immunofluorescence analysis was performed to assess the expression of surface markers after exposure to 20 and 100 μM citric acid.
Results: Different mineralisation patterns were observed. Supplemented with citric acid, media showed more diffuse and less dense crystals. On day 18, most VEGF was secreted from the cells with no added citric acid. On day 24, there was a significant increase (p < 0.05) in the levels of VEGF secreted from cells treated with 20 μM citric acid. On day 28, cells from the control group did not secrete VEGF. There was a reduction in the levels of VEGF secreted by cells treated with 20 μM citric acid and a significant increase in the cells exposed to 100 μM citric acid (p < 0.05).
Conclusion: Citric acid can promote the differentiation of SCAPs and angiogenesis.
Downloads
References
Murray PE. Review of guidance for the selection of regenerative endodontics, apexogenesis, apexification, pulpotomy, and other endodontic treatments for immature permanent teeth. Int Endod J. 2023;56(Suppl 2):188–199. https://doi.org/10.1111/iej.13809. DOI: https://doi.org/10.1111/iej.13809
Li J, Zheng L, Daraqel B, et al. The efficacy of concentrated growth factor and platelet-rich fibrin as scaffolds in regenerative endodontic treatment applied to immature permanent teeth: a retrospective study. BMC Oral Health. 2023;23(1):482. https://doi.org/10.1186/s12903-023-03164-y. DOI: https://doi.org/10.1186/s12903-023-03164-y
Shen Z, Tsao H, LaRue S, et al. Vascular endothelial growth factor and/or nerve growth factor treatment induces expression of dentinogenic, neuronal, and healing markers in stem cells of the apical papilla. J Endod. 2021;47(6):924–931. https://doi.org/10.1016/j.joen.2021.02.011. DOI: https://doi.org/10.1016/j.joen.2021.02.011
Fouad AF, Diogenes AR, Torabinejad M, et al. Microbiome changes during regenerative endodontic treatment using different methods of disinfection. J Endod. 2022;48(10):1273–1284. https://doi.org/10.1016/j.joen.2022.07.004. DOI: https://doi.org/10.1016/j.joen.2022.07.004
Rahmati A, Karkehabadi H, Rostami G, et al. Comparative effects of Er:YAG laser, and EDTA, MTAD, and QMix irrigants on adhesion of stem cells from the apical papilla to dentin: a scanning electron microscopic study. J Clin Exp Dent. 2022;14(4):e310–e315. https://doi.org/10.4317/jced.59129. DOI: https://doi.org/10.4317/jced.59129
Wei X, Yang M, Yue L, et al. Expert consensus on regenerative endodontic procedures. Int J Oral Sci. 2022;14(1):55. https://doi.org/10.1038/s41368-022-00206-z. DOI: https://doi.org/10.1038/s41368-022-00206-z
da Silva Magalhães K, Kuerten Gil AC, Goulart TS, et al. Efficacy of disinfection procedures performed prior to regenerative endodontic therapy: an integrative review. Aust Endod J. 2023;49(2):418–427. https://doi.org/10.1111/aej.12670. DOI: https://doi.org/10.1111/aej.12670
Sadaghiani L, Alshumrani AM, Gleeson HB, et al. Growth factor release and dental pulp stem cell attachment following dentine conditioning: an in vitro study. Int Endod J. 2022;55(8):858–869. https://doi.org/10.1111/iej.13781. DOI: https://doi.org/10.1111/iej.13781
Arslan H, Ahmed HMA, Şahin Y, et al. Regenerative endodontic procedures in necrotic mature teeth with periapical radiolucencies: a preliminary randomized clinical study. J Endod. 2019;45(7):863–872. https://doi.org/10.1016/j.joen.2019.04.005. DOI: https://doi.org/10.1016/j.joen.2019.04.005
Ballal NV, Narkedamalli R, Ruparel NB, et al. Effect of maleic acid root conditioning on release of transforming growth factor beta 1 from infected root canal dentin. J Endod. 2022;48(5):620–624. https://doi.org/10.1016/j.joen.2022.02.007. DOI: https://doi.org/10.1016/j.joen.2022.02.007
Tonini R, Salvadori M, Audino E, et al. Irrigating solutions and activation methods used in clinical endodontics: a systematic review. Front Oral Health. 2022;3:838043. https://doi.org/10.3389/froh.2022.838043. DOI: https://doi.org/10.3389/froh.2022.838043
Atesci AA, Avci CB, Tuglu MI, et al. Effect of different dentin conditioning agents on growth factor release, mesenchymal stem cell attachment and morphology. J Endod. 2020;46(2):200–208. https://doi.org/10.1016/j.joen.2019.10.033. DOI: https://doi.org/10.1016/j.joen.2019.10.033
Ivica A, Zehnder M, Mateos JM, et al. Biomimetic conditioning of human dentin using citric acid. J Endod. 2019;45(1):45–50. https://doi.org/10.1016/j.joen.2018.09.015. DOI: https://doi.org/10.1016/j.joen.2018.09.015
Shamszadeh S, Shirvani A, Asgary S. The role of growth factor delivery systems on cellular activities of dental stem cells: a systematic review (Part II). Curr Stem Cell Res Ther. 2024;19(4):587–610. https://doi.org/10.2174/1574888X17666220609093939. DOI: https://doi.org/10.2174/1574888X17666220609093939
Gómez-Delgado M, Camps-Font O, Luz L, et al. Update on citric acid use in endodontic treatment: a systematic review. Odontology. 2023;111(1):1–19. https://doi.org/10.1007/s10266-022-00744-2. DOI: https://doi.org/10.1007/s10266-022-00744-2
Wu X, Dai H, Xu C, et al. Citric acid modification of a polymer exhibits antioxidant and anti-inflammatory properties in stem cells and tissues. J Biomed Mater Res A. 2019;107(11):2414–2424. https://doi.org/10.1002/jbm.a.36748. DOI: https://doi.org/10.1002/jbm.a.36748
Yu S, Zheng Y, Guo Q, et al. Mechanism of pulp regeneration based on concentrated growth factors regulating cell differentiation. Bioengineering (Basel). 2023;10(5):513. https://doi.org/10.3390/bioengineering10050513. DOI: https://doi.org/10.3390/bioengineering10050513
Tabatabaei F, Aghamohammadi Z, Tayebi L. In vitro and in vivo effects of concentrated growth factor on cells and tissues. J Biomed Mater Res A. 2020;108(6):1338–1350. https://doi.org/10.1002/jbm.a.36906. DOI: https://doi.org/10.1002/jbm.a.36906
Liu C, Xiong H, Chen K, et al. Long-term exposure to pro-inflammatory cytokines inhibits the osteogenic/dentinogenic differentiation of stem cells from the apical papilla. Int Endod J. 2016;49(10):950–959. https://doi.org/10.1111/iej.12551. DOI: https://doi.org/10.1111/iej.12551
Abe S, Kaida A, Kanemaru K, et al. Differences in the stemness characteristics and molecular markers of distinct human oral tissue neural crest-derived multilineage cells. Cell Prolif. 2022;55(10):e13286. https://doi.org/10.1111/cpr.13286. DOI: https://doi.org/10.1111/cpr.13286
Liang J, Zhao YJ, Li JQ, et al. A pilot study on biological characteristics of human CD24(+) stem cells from the apical papilla. J Dent Sci. 2022;17(1):264–275. https://doi.org/10.1016/j.jds.2021.01.012. DOI: https://doi.org/10.1016/j.jds.2021.01.012
Dong R, Yao R, Du J, et al. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Exp Cell Res. 2013;319(18):2874–2882. https://doi.org/10.1016/j.yexcr.2013.07.008. DOI: https://doi.org/10.1016/j.yexcr.2013.07.008
Zhang W, Zhang X, Ling J, et al. Proliferation and odontogenic differentiation of BMP2 gene‑transfected stem cells from human tooth apical papilla: an in vitro study. Int J Mol Med. 2014;34(4):1004–1012. https://doi.org/10.3892/ijmm.2014.1862. DOI: https://doi.org/10.3892/ijmm.2014.1862
Matsui M, Kobayashi T, Tsutsu T. CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Hum Cell. 2018;31(2):127–138. https://doi.org/10.1007/s13577-017-0198-2. DOI: https://doi.org/10.1007/s13577-017-0198-2
Turrioni AP, Oliveira Neto NF, Xu Y, et al. Proliferation rate and expression of stem cells markers during expansion in primary culture of pulp cells. Braz Oral Res. 2021;35:e128. https://doi.org/10.1590/1807-3107bor-2021.vol35.0128. DOI: https://doi.org/10.1590/1807-3107bor-2021.vol35.0128
Aydin S, Şahin F. Stem cells derived from dental tissues. Adv Exp Med Biol. 2019;1144:123–132. https://doi.org/10.1007/5584_2018_333. DOI: https://doi.org/10.1007/5584_2018_333
Diederich A, Fründ HJ, Trojanowicz B, et al. Influence of ascorbic acid as a growth and differentiation factor on dental stem cells used in regenerative endodontic therapies. J Clin Med. 2023;12(3):1196. https://doi.org/10.3390/jcm12031196. DOI: https://doi.org/10.3390/jcm12031196
Retana-Lobo C, Reyes-Carmona J. Immunohistochemical characterization of stem cell, vascular, neural, and differentiation markers in the apical papilla and dental pulp of human teeth at various stages of root development. J Histotechnol. 2023;46(1):17–27. https://doi.org/10.1080/01478885.2022.2122665. DOI: https://doi.org/10.1080/01478885.2022.2122665
Li FC, Shahin-Shamsabadi A, Selvaganapathy PR, et al. Engineering a novel stem cells from apical papilla-macrophages organoid for regenerative endodontics. J Endod. 2022;48(6):741–748. https://doi.org/10.1016/j.joen.2022.02.011. DOI: https://doi.org/10.1016/j.joen.2022.02.011
Savoj S, Esfahani MHN, Karimi A, et al. Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sci. 2022;291:120273. https://doi.org/10.1016/j.lfs.2021.120273. DOI: https://doi.org/10.1016/j.lfs.2021.120273
Liu Z, Yan N, Chen Y, et al. Hepatocyte growth factor promotes differentiation potential and stress response of human stem cells from apical papilla. Cells Tissues Organs. 2024;213(1):40–54. https://doi.org/10.1159/000527212. DOI: https://doi.org/10.1159/000527212
Zou J, Mao J, Shi X. Influencing factors of pulp-dentin complex regeneration and related biological strategies. Zhejiang Da Xue Bao Yi Xue Ban. 2022;51(3):350–361. https://doi.org/10.3724/zdxbyxb-2022-0046. DOI: https://doi.org/10.3724/zdxbyxb-2022-0046
Camassari JR, de Sousa ITC, Cogo-Müller K, et al. The self-assembling peptide P(11)-4 influences viability and osteogenic differentiation of stem cells of the apical papilla (SCAP). J Dent. 2023;134:104551. https://doi.org/10.1016/j.jdent.2023.104551. DOI: https://doi.org/10.1016/j.jdent.2023.104551
Liu Q, Gao Y, He J. Stem cells from the apical papilla (SCAPs): past, present, prospects, and challenges. Biomedicines. 2023;11(7):2047. https://doi.org/10.3390/biomedicines11072047. DOI: https://doi.org/10.3390/biomedicines11072047
Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;20(1):e79. https://doi.org/10.1371/journal.pone.0000079. DOI: https://doi.org/10.1371/journal.pone.0000079
Perut F, Graziani G, Columbaro M, et al. Citrate supplementation restores the impaired mineralisation resulting from the acidic microenvironment: an in vitro study. Nutrients. 2020;12(12):3779. https://doi.org/10.3390/nu12123779. DOI: https://doi.org/10.3390/nu12123779
McKenzie JA, Galbreath IM, Coello AF, et al. VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading. Bone. 2022;163:116502. https://doi.org/10.1016/j.bone.2022.116502. DOI: https://doi.org/10.1016/j.bone.2022.116502
Zhang R, Liu Y, Qi Y, et al. Self-assembled peptide hydrogel scaffolds with VEGF and BMP-2 enhanced in vitro angiogenesis and osteogenesis. Oral Dis. 2022;28(3):723–733. https://doi.org/10.1111/odi.13785. DOI: https://doi.org/10.1111/odi.13785
Brunello G, Zanotti F, Scortecci G, et al. Dentin particulate for bone regeneration: an in vitro study. Int J Mol Sci. 2022;23(16):9283. https://doi.org/10.3390/ijms23169283. DOI: https://doi.org/10.3390/ijms23169283
Xu F, Qiao L, Zhao Y, et al. The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther. 2019;10(1):134. https://doi.org/10.1186/s13287-019-1247-4. DOI: https://doi.org/10.1186/s13287-019-1247-4
Janebodin K, Chavanachat R, Hays A, et al. Silencing VEGFR-2 hampers odontoblastic differentiation of dental pulp stem cells. Front Cell Dev Biol. 2021;9:665886. https://doi.org/10.3389/fcell.2021.665886. DOI: https://doi.org/10.3389/fcell.2021.665886
Isola G, Matarese G, Cordasco G, et al. Mechanobiology of the tooth movement during the orthodontic treatment: a literature review. Minerva Stomatol. 2016;65(5):299–327.
Kim SK, Lee J, Song M, et al. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix. J Biomed Mater Res B Appl Biomater. 2016;104(8):1535–1543. https://doi.org/10.1002/jbm.b.33498. DOI: https://doi.org/10.1002/jbm.b.33498
Elango J. Proliferative and osteogenic supportive effect of VEGF-loaded collagen-chitosan hydrogel system in bone marrow derived mesenchymal stem cells. Pharmaceutics. 2023;15(4):1297. https://doi.org/10.3390/pharmaceutics15041297. DOI: https://doi.org/10.3390/pharmaceutics15041297
D’Alimonte I, Nargi E, Mastrangelo F. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents. 2011;25(1):57–69.
Xu W, Xu X, Yao L, et al. VEGFA-modified DPSCs combined with LC-YE-PLGA NGCs promote facial nerve injury repair in rats. Heliyon. 2023;9(4):e14626. https://doi.org/10.1016/j.heliyon.2023.e14626. DOI: https://doi.org/10.1016/j.heliyon.2023.e14626
Published
Issue
Section
License
Copyright (c) 2024 Krasimir Hristov, Nikolay Ishkitiev, Marina Miteva, Violeta Dimitrova, Ralitsa Gigova, Nataliya Gateva, Liliya Angelova
This work is licensed under a Creative Commons Attribution 4.0 International License.