The power of light – From dental materials processing to diagnostics and therapeutics
DOI:
https://doi.org/10.2340/biid.v11.40308Keywords:
Resin based composites, light curing, high irradiance, high power, photoinitiators, dark cure, transillumination, photobiomodulation, photodynamic therapy, photodisinfectionAbstract
Harnessing the power of light and its photonic energy is a powerful tool in biomedical applications. Its use ranges from biomaterials processing and fabrication of polymers to diagnostics and therapeutics. Dental light curable materials have evolved over several decades and now offer very fast (≤ 10 s) and reliable polymerization through depth (4–6 mm thick). This has been achieved by developments on two fronts: (1) chemistries with more efficient light absorption characteristics (camphorquinone [CQ], ~30 L mol-1 cm1 [ʎmax 470 nm]; monoacylphosphine oxides [MAPO], ~800 L mol-1 cm-1 [ʎmax 385 nm]; bisacylphosphine oxide [BAPO], ~1,000 L mol-1 cm-1 [ʎmax 385 nm]) as well mechanistically efficient and prolonged radical generation processes during and after light irradiation, and; (2) introducing light curing technologies (light emitting diodes [LEDs] and less common lasers) with higher powers (≤ 2 W), better spectral range using multiple diodes (short: 390–405 nm; intermediate: 410–450 nm; and long: 450–480 nm), and better spatial power distribution (i.e. homogenous irradiance). However, adequate cure of materials falls short for several reasons, including improper selection of materials and lights, limitations in the chemistry of the materials, and limitations in delivering light through depth. Photonic energy has further applications in dentistry which include transillumination for diagnostics, and therapeutic applications that include photodynamic therapy, photobiomodulation, and photodisinfection. Light interactions with materials and biological tissues are complex and it is important to understand the advantages and limitations of these interactions for successful treatment outcomes. This article highlights the advent of photonic technologies in dentistry, its applications, the advantages and limitations, and possible future developments.
Downloads
References
Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composit B Eng. 2018;143:172–96. https://doi.org/10.1016/j.compositesb.2018.02.012 DOI: https://doi.org/10.1016/j.compositesb.2018.02.012
Chaudhary R, Fabbri P, Leoni E, et al. Additive manufacturing by digital light processing: a review. Progr Addit Manufact. 2023;8:331–51. https://doi.org/10.1007/s40964-022-00336-0 DOI: https://doi.org/10.1007/s40964-022-00336-0
Javaid M, Haleem A. Current status and applications of additive manufacturing in dentistry: a literature-based review. J Oral Biol Cranio-facial Res. 2019;9:179–85. https://doi.org/10.1016/j.jobcr.2019.04.004 DOI: https://doi.org/10.1016/j.jobcr.2019.04.004
Alasiri RA, Algarni HA, Alasiri RA. Ocular hazards of curing light units used in dental practice – a systematic review. Saudi Dent J. 2019;31:173–80. https://doi.org/10.1016/j.sdentj.2019.02.031 DOI: https://doi.org/10.1016/j.sdentj.2019.02.031
Craig RG. Chemistry, composition and properties of composite resins. Dent Clin N Am. 1981;25:219–39. https://doi.org/10.1016/S0011-8532(22)02805-1 DOI: https://doi.org/10.1016/S0011-8532(22)02805-1
Rueggeberg FA, Giannini M, Arrais CAG, Price RBT. Light curing in dentistry and clinical implications: a literature review. Brazallian Oral Res. 2017;28:e61. https://doi.org/10.1590/1807-3107bor-2017.vol31.0061 DOI: https://doi.org/10.1590/1807-3107bor-2017.vol31.0061
Ham WT, Mueller HS, Sliney DH. Retinal sensitivity to damage by short-wavelength light. Nature. 1976;260:153–5. https://doi.org/10.1038/260153a0 DOI: https://doi.org/10.1038/260153a0
Cho K, Rajan G, Farrar P, Prentice L, Prusty BG. Dental resin composites: a review on materials to product realizations. Composit B. 2022;230:109495. https://doi.org/10.1016/j.compositesb.2021.109495 DOI: https://doi.org/10.1016/j.compositesb.2021.109495
Palin WM, Leprince JG, Hadis MA. Shining a light on high volume photocurable materials. Dent Mater. 2018;34:695–710. https://doi.org/10.1016/j.dental.2018.02.009 DOI: https://doi.org/10.1016/j.dental.2018.02.009
Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater. 2012;28:521–8. https://doi.org/10.1016/j.dental.2012.02.002 DOI: https://doi.org/10.1016/j.dental.2012.02.002
Ismail EH, Al-Zain AO, Alghaith LS,Alsenan D, Ageel F. Shedding light on the problem: Proficiencyand maintenance practices of light-curing units among dentalassistants.J Esthet Restor Dent. 2023;1‐10. https://doi.org/10.1111/jerd.13160 DOI: https://doi.org/10.1111/jerd.13160
Neumann MG, Miranda WG Jr, Schmitt CC, Rueggeberg FA, Correa IC. Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent. 2005;33:525–32. https://doi.org/10.1016/j.jdent.2004.11.013 DOI: https://doi.org/10.1016/j.jdent.2004.11.013
Rueggeberg FA, Ergle JW, Lockwood PE. Effect of photoinitiator level on properties of a light-cured and post-cure heated model resin system. Dent Mater. 1997;13:360–4. https://doi.org/10.1016/S0109-5641(97)80107-8 DOI: https://doi.org/10.1016/S0109-5641(97)80107-8
Shin DH, Rawls HR. Degree of conversion and color stability of the light curing resin with new photoinitiator systems. Dent Mater. 2009;25:1030–8. https://doi.org/10.1016/j.dental.2009.03.004 DOI: https://doi.org/10.1016/j.dental.2009.03.004
Leprince JG, Hadis M, Shortall AC, et al. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011;27:157–64. https://doi.org/10.1016/j.dental.2010.09.011 DOI: https://doi.org/10.1016/j.dental.2010.09.011
Hamidi AS, Hadis MA, Palin WM. Alternative co-initiators for photocurable dental resins: polymerisation, quantum yield of conversion and cytotoxicity. Dent Mater. 2022;38:1330–43. https://doi.org/10.1016/j.dental.2022.06.001 DOI: https://doi.org/10.1016/j.dental.2022.06.001
Ural Ç, Duran İ, Tatar N, Öztürk Ö, Kaya İ, Kavut İ. The effect of amine-free initiator system and the polymerization type on color stability of resin cements. J Oral Sci. 2016;58:157–61. https://doi.org/10.2334/josnusd.15-0619 DOI: https://doi.org/10.2334/josnusd.15-0619
Ganster B, Fischer UK, Moszner N, Liska R. New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing. Macromolecules. 2008;41:2394–400. https://doi.org/10.1021/ma702418q DOI: https://doi.org/10.1021/ma702418q
Chen Y-C, Ferracane JL, Prahl SA. Quantum yield conversion of the photoinitiator camphorquinone. Dent Mater. 2007;23:655–64. https://doi.org/10.1016/j.dental.2006.06.005 DOI: https://doi.org/10.1016/j.dental.2006.06.005
Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008;24:901–7. https://doi.org/10.1016/j.dental.2007.11.004 DOI: https://doi.org/10.1016/j.dental.2007.11.004
Topa M, Ortyl J. Moving towards a finer way of light-cured Resin-based restorative dental materials: recent advances in photoinitiating systems based on iodonium salts. Materials (Basel). 2020;13(18):4093. https://doi.org/10.3390/ma13184093 DOI: https://doi.org/10.3390/ma13184093
Verzola KC, Dressano D, Saraceni CHC, et al. Bis(4-methyl phenyl)iodonium as an alternative component to diphenyliodonium in camphor-quinone-based ternary initiating system. Dent Mater. 2020;36:1282–8. https://doi.org/10.1016/j.dental.2020.06.002 DOI: https://doi.org/10.1016/j.dental.2020.06.002
Lima AF, Salvador MVO, Dressano D, et al. Increased rates of photopolymerisation by ternary type II photoinitiator systems in dental resins. J Mechan Behav Biomed Mater. 2019;98:71–78. https://doi.org/10.1016/j.jmbbm.2019.06.005 DOI: https://doi.org/10.1016/j.jmbbm.2019.06.005
Randolph LD, Palin WM, Bebelman S, et al. Ultra-fast light-curing resin composite with increased conversion and reduced monomer elu-tion. Dent Mater. 2014;30:594–604. https://doi.org/10.1016/j.dental.2014.02.023 DOI: https://doi.org/10.1016/j.dental.2014.02.023
Miller GA, Gou L, Narayanan V, Scranton A. Modeling of photobleaching for the photoinitiation of thick polymerization systems. J Polymer Sci A Polymer Chem. 2002;40:793–808. https://doi.org/10.1002/pola.10162 DOI: https://doi.org/10.1002/pola.10162
Brackett MG, Brackett WW, Browning WD, Rueggeberg FA. The effect of light curing source on the residual yellowing of resin composites. Opererat Dent. 2007;32:443–50. https://doi.org/10.2341/06-129 DOI: https://doi.org/10.2341/06-129
Shortall AC, Hadis MA, Palin WM. On the inaccuracies of dental radiometers. PLoS One. 2021;16(1):e0245830. https://doi.org/10.1371/journal.pone.0245830 DOI: https://doi.org/10.1371/journal.pone.0245830
Rueggeberg FA, Ergle JW, Mettenburg DJ. Polymerization depths of contemporary light-curing units using microhardness. J Esthetic Dent. 2000;12:340–9. https://doi.org/10.1111/j.1708-8240.2000.tb00243.x DOI: https://doi.org/10.1111/j.1708-8240.2000.tb00243.x
Christensen GJ. Curing lights: laser diode versus other light sources. Clinic Rep. 2022;15:1–4.
Rocha MG, Maucoski C, Roulet JF, Price RB. Depth of cure of 10 resin-based composites light activated using a laser diode, multi-peak and single-peak light emitting diode curing lights. J Dent. 2022;122:104141. https://doi.org/10.1016/j.jdent.2022.104141 DOI: https://doi.org/10.1016/j.jdent.2022.104141
Rocha MG, Oliveira D, Felix C, Roulet JF, Sinhoreti MAC, Correr AB. Beam profiling of dental light curing units using different camera-based systems. Eur J Dent. 2022;16:64–79. https://doi.org/10.1055/s-0041-1731628 DOI: https://doi.org/10.1055/s-0041-1731628
Hyoungseok K, Kim D, Park S. Homogeneity of dental curing beam profile and its effect on microhardness of dental composites with carry-ing thickness. Dent Mater. 2022;38:e231–43. https://doi.org/10.1016/j.dental.2022.06.011 DOI: https://doi.org/10.1016/j.dental.2022.06.011
Price RB, Labrie D, Whalen JM, Felix CM. Effect of distance on irradiance and beam homogeneity from 4 light emitting diode curing units. J Can Dent Assoc. 2011;77:b9.
Maucoski C, Price RB, Rocha MG, Roulet JF, Sullivan B. Ability of short exposures from laser and quad-wave curing lights to photo-cure bulk-fill resin-based composites. Dent Mater. 2023;39:275–292. https://doi.org/10.1016/j.dental.2023.01.007 DOI: https://doi.org/10.1016/j.dental.2023.01.007
Price RBT, Labrie D, Rueggeberg FA, Sulivan B, Kostylev I, Fahey J. Correlation between the beam profile from a curing light and the mi-crohardness of four resins. Dental Mater. 2014;30:1345–57. https://doi.org/10.1016/j.dental.2014.10.001 DOI: https://doi.org/10.1016/j.dental.2014.10.001
Bonsor SJ, Palin WM. ‘Let there be light’ and there was light, but was it enough? A review on modern dental light curing. Dental Update. 2021;48:633–40. https://doi.org/10.12968/denu.2021.48.8.633 DOI: https://doi.org/10.12968/denu.2021.48.8.633
Pelissier B, Jacquot B, Palin WM, Shortall AC. Three generations of LED lights and clinical implications for optimizing their use. 1: from past to present. Dent Update. 2011;38:660–2, 664–6, 668–70. https://doi.org/10.12968/denu.2011.38.10.660 DOI: https://doi.org/10.12968/denu.2011.38.10.660
Shortall AC, Palin WM, Jacquot B, Pelissier B. Advances in light-curing units: four generations of LED lights and clinical implications for optimizing their use: Part 2. From present to future. Dent Update. 2012;39:13–17, 20–22. https://doi.org/10.12968/denu.2012.39.1.13 DOI: https://doi.org/10.12968/denu.2012.39.1.13
Shortall AC, Price RB, McKenzie L, Burke FJT. Guidelines for the selection, use and maintenance of LED light curing units – Part 1. Br Dent J. 2016;221:453–460. https://doi.org/10.1038/sj.bdj.2016.772 DOI: https://doi.org/10.1038/sj.bdj.2016.772
Price RB, Ferracane JL, Hickel R, Sullivan B. The light-curing unit: an essential piece of dental equipment. Int Dent J. 2020;70:407–417. https://doi.org/10.1111/idj.12582 DOI: https://doi.org/10.1111/idj.12582
Dental curing lights market by product type, end-user, and geography – Forecast and analysis 2023–2027, Technavio [Internet]. [Internet 21-09-2023]. Available from: (https://www.technavio.com/report/dental-curing-lights-market-analysis
Dental composites market: current analysis and forecast (2022–2028) [Internet]. UnivDatos Market Insights. [cited 21-09-2023]. Available from: https://univdatos.com/report/dental-composites-market/
Odum NC, Ross JT, Citrin NS, Tantbirojn D, Versluis A. Fast curing with high-power lights affects depth of cure and post gel shrinkage and increase temperature in bulk-fill composites. Operat Dent. 2023;48:98–107. https://doi.org/10.2341/21-160-L DOI: https://doi.org/10.2341/21-160-L
Par M, Marovic D, Attin T, Tarle Z, Tauböck TT. The effect of rapid high-intensity light-curing on micromechanical properties of bulk-fill and conventional resin composites. Sci Rep. 2020;10:10560. https://doi.org/10.1038/s41598-020-67641-y DOI: https://doi.org/10.1038/s41598-020-67641-y
The Monet Laser Curing Light. The 1s revolution. AMD; 2021. The Monet Curing Light: A Dental Curing Revolution | AMD Lasers - amdlasers).
Hadis M, Leprince JG, Shortall AC, Devaux J, Leloup G, Palin WM. High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. J Dent. 2011;39:549–57. https://doi.org/10.1016/j.jdent.2011.05.007 DOI: https://doi.org/10.1016/j.jdent.2011.05.007
Shortall AC, Price RB, MacJenzie L, Burke FJT. Guidelines for the selection, use and maintenance of LED light-curing units – Part II. Br Dent J. 2016;221:551–554. https://doi.org/10.1038/sj.bdj.2016.814 DOI: https://doi.org/10.1038/sj.bdj.2016.814
Price RB, Sullivan B. Selecting a dental light curing unit. Inside Dent. 2023;9(8).
Shortall AC, Harrington E, Patel HB, Lumley PJ. A pilot investigation of operator variability during intra-oral light curing. Br Dent J. 2002;193:276–280. https://doi.org/10.1038/sj.bdj.4801545 DOI: https://doi.org/10.1038/sj.bdj.4801545
Price RB, Felix CM, Whalen JM. Factors affecting the energy delivered to simulated Class I and Class V preparations. J Can Dent Assoc. 2010;76:a94.
de Oliveira DCRS, Rocha MG, Roulet JF. Light curing matters: facts often overseen by dentists. Stromatol Edu J. 2018;5:236–42. https://doi.org/10.25241/stomaeduj.2018.5(4).art.4 DOI: https://doi.org/10.25241/stomaeduj.2018.5(4).art.4
Demarco FF, Cenci MS, Montagner AF, et al. Longevity of composite restorations is definitely not only about materials. Dent Mater. 2023;39:1–12. https://doi.org/10.1016/j.dental.2022.11.009 DOI: https://doi.org/10.1016/j.dental.2022.11.009
Odian G. Photochemical initiation. In: Odian G, editor. Principles of polymerization. Published by John Wiley & Sons, Inc., Hoboken, New Jersey and Canada; 2004, p. 218–24 [chapter 3–4c].
ISO4049, Geneva Switzerland: 2000 (3). Dentistry -polymer based filling, restorative and luting materials; 7.10 Depth of cure, Class 2 ma-terials. International Organisation for Standardisation; 2000.
Fried D, Glena RE, Featherstone JDB, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wave-lengths. Appl Opt. 1995;34:1278–85. https://doi.org/10.1364/AO.34.001278
Pop-Ciutrila IS, Ghinea R, Gomez MMP, Colosi HA, Dudea D, Badea M. Dentine scattering, absorption, transmittance and light reflectivity in human incisors, canines and molars. J Dent. 2015;43:1116–24. https://doi.org/10.1016/j.jdent.2015.06.011 DOI: https://doi.org/10.1016/j.jdent.2015.06.011
Emami N, Sjödahl M, Söderholm KJ. How filler properties, filler fraction, sample thickness and light source affect light attenuation in par-ticulate filled resin composites. Dent Mater. 2005;21:721–30. https://doi.org/10.1016/j.dental.2005.01.002 DOI: https://doi.org/10.1016/j.dental.2005.01.002
Spranly TJ, Winkler M, Dagate J, Oncale D, Strother E. Curing light burns. Gen Dent. 2012;60:e210–14.
Wilder Jr AD, May Jr KN, Bayne SC, Taylor DF, Leinfelder KF. Seventeen-year clinical study of ultraviolet-cured posterior composite Class I and II restorations. J Esthetic Dent. 1999;11:135–42. https://doi.org/10.1111/j.1708-8240.1999.tb00390.x DOI: https://doi.org/10.1111/j.1708-8240.1999.tb00390.x
Darvell BW. Materials science for dentistry. 10th ed. Woodhead Publishing Series in Biomaterials, Woodhead Publishing, 2018, Duxford, United Kingdom, Chapter 5 and 6.
Lewis GN, Kasha M. Phospherescence and the triplet state. J Am Chem Soc. 1944;66:2100–16. https://doi.org/10.1021/ja01240a030 DOI: https://doi.org/10.1021/ja01240a030
Cook WD, Chen F. Enhanced photopolymerisation of dimethacrylates with ketones, amines and iodonium salts: the CQ system. J Polymer Scit A Polymer Chem. 2011; 49: 5030–41. https://doi.org/10.1002/pola.24964 DOI: https://doi.org/10.1002/pola.24964
Moon HJ, Shin DH. Effect of CQ-amine ratio on the degree of conversion in resin monomers with binary and ternary photoinitiation sys-tems. Restorat Dent Endodont. 2012;37:96–103. https://doi.org/10.5395/rde.2012.37.2.96 DOI: https://doi.org/10.5395/rde.2012.37.2.96
Haslinger C, Leutgeb L, Haas M, Baudis S, Lisk R. Synthesis and photochemical investigation of tetraacylgermanes. ChemPhotoChem. 2022;6:e202200108. https://doi.org/10.1002/cptc.202200108 DOI: https://doi.org/10.1002/cptc.202200108
Moszner N, Fischer UK, Salz U, et al. Polymerisierbare Zusammensetzungen mit Acylgermaniumverbindungen als Initiatoren. US-Patent 7,605, 190 B2 (20.10.2009), EP-Patent 1,905,415 B1 (01.07.2009), Ivoclar Vivadent AG.
Bouzrati-Zerelli M, Maier M, Dietlin C, et al. A novel photoinitiating system producing germyl radicals for the polymerisation of repre-sentative methacrylate resins: camphorquinone/R3GeH/iodonium salt. Dent Mater. 2016;32:1226–34. https://doi.org/10.1016/j.dental.2016.07.006 DOI: https://doi.org/10.1016/j.dental.2016.07.006
Hassan SS, Al-Jadwaa FTA, Ashou WMO. Evaluation of degree of conversion of different types of bulk-fill resin composites. J Glob Sci Res. 2022;7:2104–16.
Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composite at two time intervals. Dent Mater. 2013;29:e213–7. https://doi.org/10.1016/j.dental.2013.05.011 DOI: https://doi.org/10.1016/j.dental.2013.05.011
Li X, Pongprueksa P, Meerbeek BV, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent. 2015;43:664–72. https://doi.org/10.1016/j.jdent.2015.01.002 DOI: https://doi.org/10.1016/j.jdent.2015.01.002
Pedalino L, Hartup GR, Vandewalle KS. Depth of cure of bulk-fill composite resins. Gen Dent. 2015;63:e28–34.
Yap AU, Pandya M, Toh WS. Depth of cure of contemporary bulk-fill resin based composites. Dent Mater J. 2016;35:503–10. https://doi.org/10.4012/dmj.2015-402 DOI: https://doi.org/10.4012/dmj.2015-402
Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater. 2014;30:149–54. https://doi.org/10.1016/j.dental.2013.10.011 DOI: https://doi.org/10.1016/j.dental.2013.10.011
Kim K. Sinha J, Gao G, et al. High efficiency radical polymerisation enhanced by autonomous dark cure. Macromolecules. 2020;53:5034–46. https://doi.org/10.1021/acs.macromol.0c01023 DOI: https://doi.org/10.1021/acs.macromol.0c01023
Kim K, Sinha J, Stansbury JW, Musgrave CB. Visible-light photoinitiation of (meth)acrylate polymerisation with autonomous post-conversion. Macromolecules. 2021;54:7702–15. https://doi.org/10.1021/acs.macromol.1c00761 DOI: https://doi.org/10.1021/acs.macromol.1c00761
Par M, Lapas Barisis M, Gamulin O, Panduric V, Spanovic N, Tarle Z. Long term degree of conversion of two bulk fill composites. Acta Stromatol Croat. 2016;50:292–300. https://doi.org/10.15644/asc50/4/2 DOI: https://doi.org/10.15644/asc50/4/2
Tarle Z, Attin T, Marovic D, Andermatt L, Ristic M, Taubock TT. Influence of irradiation time on subsurface degree of conversion and micro-hardness of high viscosity bulk-fill resin composites. Clin Oral Invest. 2015;19:831–40. https://doi.org/10.1007/s00784-014-1302-6 DOI: https://doi.org/10.1007/s00784-014-1302-6
Faria-e-Silva AL, Pfieifer CS. Delayed photo-activation and addition of thio-urethane: impact on polymerisation kinetics and stress of dual-cured resin cements. J Dent. 2017;65:101–9. https://doi.org/10.1016/j.jdent.2017.07.014 DOI: https://doi.org/10.1016/j.jdent.2017.07.014
Maravic T, Mazztelli C, Mancuso D, et al. Resin composite cements: current status and novel classification proposal. J Esthetic Restorat Dent. 2023;35:1085–97. https://doi.org/10.1111/jerd.13036 DOI: https://doi.org/10.1111/jerd.13036
Windle CB, Hill AE, Tantbirojn D, Versluis A. Dual-cure dental composites: can light curing interfere with conversion? J Mechan Behav Biomed Mater. 2022;132:105289. https://doi.org/10.1016/j.jmbbm.2022.105289 DOI: https://doi.org/10.1016/j.jmbbm.2022.105289
Ilie N, Simon A. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements. Clin Oral Invest. 2012;16:505–12. https://doi.org/10.1007/s00784-011-0527-x DOI: https://doi.org/10.1007/s00784-011-0527-x
Ilie N. Comparative effect of self- or dual-curing on polymerisation kinetics and mechanical properties in a novel, dental-resin-based compo-site with alkaline filler. Running title: Resin composites with alkaline fillers. Materials. 2018;11:101–20. https://doi.org/10.3390/ma11010108 DOI: https://doi.org/10.3390/ma11010108
Peutzfeldt A, Lussi A, Flury S. Effect of high irradiance light curing on micromechanical properties of resin cements. BioMed Res Int. 2016;2016:4894653. https://doi.org/10.1155/2016/4894653 DOI: https://doi.org/10.1155/2016/4894653
Feng L, Suh BI. Exposure reciprocity law in photopolymerisation of multifunctional acrylates and methacrylates. Macromol Chem Phys. 2007;208:295–306. https://doi.org/10.1002/macp.200600480 DOI: https://doi.org/10.1002/macp.200600480
Garra P, Morlet Savary F, Dietlin C, Fouassier JP, Lalevee J. On-demand visible light activated amine/benzoyl peroxide redox initiating systems: a unique tool to overcome the shadow areas in photopolymerisation processes. Macromolecules. 2016;49:9371–81. https://doi.org/10.1021/acs.macromol.6b02167 DOI: https://doi.org/10.1021/acs.macromol.6b02167
Aguirre-Soto A, Lim CH, Hwang AT, Musgrave CB, Stansbury JW. Visible-light organic photocatalysis for latent radical-initiated polymeri-sation via 2e-/1H+ transfers: initiation with parallels to photosynthesis. J Am Chem Soc. 2014;136:7418–27. https://doi.org/10.1021/ja502441d DOI: https://doi.org/10.1021/ja502441d
Stansbury JW, Kim K, Musgrave CB, Sinha J. Highly efficient free radical photopolymerisations through enabled dark cure. US-Patent 11, 597, 735 B2 (7.03.2023).
Meniga A, Sutalo J, Rukavina J, Azinović D, Pichler G. Zinc and sodium high pressure lamps for curing composite resins. Acta Stomatol Croat. 1990;24:233–40.
Šutalo J, Meniga A, Rukavina J, Azinović D, Pichler G. Indium light source for curing composite resins. Acta Stomatol Croat. 1991;25:77–82.
Fleming MG, Maillet WA. Photopolymerization of composite resin using the argon laser. J Can Dent Assoc. 1999;65:447–50.
Tarle Z, Meniga A, Ristie M, Šutalo J, Pichler G. Polymersiation of composites using pulsed laser. Eur J Oral Sci. 1995;103:394–8. https://doi.org/10.1111/j.1600-0722.1995.tb01863.x DOI: https://doi.org/10.1111/j.1600-0722.1995.tb01863.x
Meniga A, Tarle Z, Ristic M, Sutalo J, Pichler G. Pulsed blue laser curing of hybrid composite resins. Biomaterials. 1997;18:1349–54. https://doi.org/10.1016/S0142-9612(97)00047-1 DOI: https://doi.org/10.1016/S0142-9612(97)00047-1
Tarle Z, Meniga A, Ristic M, Sutalo J, Pitchler G, Davidson CL. The effect of the photopolymerisation method on the quality of composite resin samples. J Oral Rehabil. 1998;25:436–42. https://doi.org/10.1046/j.1365-2842.1998.00258.x DOI: https://doi.org/10.1046/j.1365-2842.1998.00258.x
Jandt KD, Mills RW. A brief history of LED photopolymerisation. Dent Mater. 2013;29:605–17. https://doi.org/10.1016/j.dental.2013.02.003 DOI: https://doi.org/10.1016/j.dental.2013.02.003
Musanje L, Darvell BW. Polymerisation of resin composite restorative materials – exposure reciprocity. Dent Mater. 2003;19:531–41. https://doi.org/10.1016/S0109-5641(02)00101-X DOI: https://doi.org/10.1016/S0109-5641(02)00101-X
Ro JH, Son SA, Park JK, Geon GR, Ko CC, Kwon YH. Effect of two lasers on the polymerisation of composite resins. Single vs combination. Lasers Med Sci. 2015;30:1497–503. https://doi.org/10.1007/s10103-015-1753-2 DOI: https://doi.org/10.1007/s10103-015-1753-2
Faria-e-Silva A, Fanger C, Nguyen L, Howerton D, Pfeifer C. Impact of material shade and distance from light curing unit tip on the depth of polymerisation of composites. Brazillian Dent J. 2017;28:632–7. https://doi.org/10.1590/0103-6440201701727 DOI: https://doi.org/10.1590/0103-6440201701727
Hadis M, Palin WP. Spatial cure of resin composite materials polymerised with high energy light curing. PER-IADR, 2022, Marseille, France (abstract number P285).
Hadis M, Shortall A, Palin WM. Inhomogenous curing wavelength distribution affects spatial photopolymerisation in multiple photoinitia-tor systems. Euroopean Dental Materials Conference, 2019, Brussells, Belgium: Biomaterial Investigations in Dentistry, 2019;6:1–22.
Senn B, Pauler M. Homogenizer comprising a light source. Ivoclar Vivadent AG, 2016; Justia Patent Number: 10502939.
ApexVista. PinkWave Instructions for Use [Internet]. Racine, WI: ApexVista; 2021 [cited 13-07-2023]. Available from: http://vistaapex.com/pinkwave
Maucoski C, Price RB, Arrais CAG, Sullivan B. In vitro temperature changes in the pulp chamber caused by laser and quadwave LED-light curing units. Ondontology. 2023;111:668–79. https://doi.org/10.1007/s10266-022-00780-y DOI: https://doi.org/10.1007/s10266-022-00780-y
Lempel E, Őri Z, Szalma J, et al. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent Mater. 2019;35:217–28. https://doi.org/10.1016/j.dental.2018.11.017 DOI: https://doi.org/10.1016/j.dental.2018.11.017
Lovell LG, Stansbury JW, Syrpes DC, Bowman SN. Effects of composition and reactivity on the reaction kinetics of dimethacry-late/dimethacrylate copolymerizations. Macromolecular. 1999;32:3913–21. https://doi.org/10.1021/ma990258d DOI: https://doi.org/10.1021/ma990258d
Onem E, Baksi BG, Sen BH, Sögüt O, Mert A. Diagnostic accuracy of proximal enamel subsurface demineralization and its relationship with calcium loss and lesion depth. Dentomaxillofacial Radiol. 2012;41:285–93. https://doi.org/10.1259/dmfr/55879293 DOI: https://doi.org/10.1259/dmfr/55879293
Akram S, Chowdhury YS. Radiation exposure of medical imaging [Internet]. StatPearls Publishing; 2023 [cited 13-07-2023]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK565909/
Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health. 2015;15:S3. https://doi.org/10.1186/1472-6831-15-S1-S3 DOI: https://doi.org/10.1186/1472-6831-15-S1-S3
Amaechi BT, Higham SM. Quantitative light-induced fluorescence: a potential tool for general dental assessment. J Biomed Opt. 2002;7:7–13. https://doi.org/10.1117/1.1427044 DOI: https://doi.org/10.1117/1.1427044
Cho KH, Kang C, Jung H, et al. The diagnostic efficacy of quantitative light-induced fluorescence in detection of dental caries of primary teeth. J Dent. 2021;115:103845. https://doi.org/10.1016/j.jdent.2021.103845 DOI: https://doi.org/10.1016/j.jdent.2021.103845
Amaechi BT, Phillips TS, Perozo BI, et al. Evaluation of a novel caries detecting oral rinse. BDJ Open. 2023;9:12. https://doi.org/10.1038/s41405-023-00134-y DOI: https://doi.org/10.1038/s41405-023-00134-y
Abou Neel EA, Aljabo A, Strange A, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743–63. https://doi.org/10.2147/IJN.S107624 DOI: https://doi.org/10.2147/IJN.S107624
Kutsch VK, Seif T. Cariology and caries management. Contemporary Esthetic Dentistry; 2012, Chapter 1 - Cariology and Caries Manage-ment, Editor(s): George Freedman, Contemporary Esthetic Dentistry, Mosby, 2012, Pages 1-32, ISBN 9780323068956, https://doi.org/10.1016/B978-0-323-06895-6.00001-3. (https://www.sciencedirect.com/science/article/pii/B9780323068956000013) Elseiver DOI: https://doi.org/10.1016/B978-0-323-06895-6.00001-3
Fried D, Jones R. Near-infrared transillumination for the imaging of early dental decay. US Patent Application, 2006, number: 2006/0223032.
Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40:516–33. https://doi.org/10.1007/s10439-011-0454-7 DOI: https://doi.org/10.1007/s10439-011-0454-7
Mohamad SA, Milward MR, Hadis MA, Kuehne SA, Cooper PR. Blue light photobiomodulation of dental pulp cells. Lasers Dent Sci. 2022;6:79–87. https://doi.org/10.1007/s41547-022-00152-3 DOI: https://doi.org/10.1007/s41547-022-00152-3
Serrage H, Heiskanen V, Palin WM, et al. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci. 2019;18:1877–909. https://doi.org/10.1039/c9pp00089e DOI: https://doi.org/10.1039/c9pp00089e
Mohamad SA, Milward MR, Kuehne SA, Hadis MA, Palin WM, Cooper PR. Potential for direct application of blue light for photo-disinfection of dentine. J Photochem Photobiol B Biol. 2021;215:112123. https://doi.org/10.1016/j.jphotobiol.2021.112123 DOI: https://doi.org/10.1016/j.jphotobiol.2021.112123
Hadis MA, Zainal SA, Holder MJ, et al. The dark art of light measurement: accurate radiometry for low-level light therapy. Lasers Med Sci. 2016;31:789–809. https://doi.org/10.1007/s10103-016-1914-y DOI: https://doi.org/10.1007/s10103-016-1914-y
Hadis MA, Cooper PR, Milward MR, et al. Development and application of LED arrays for use in phototherapy research. J Biophotonics. 2017;10:1514–25. https://doi.org/10.1002/jbio.201600273 DOI: https://doi.org/10.1002/jbio.201600273
Mang TS, Tayal DP, Baier R. Photodynamic therapy as an alternative treatment for disinfection of bacteria in oral biofilms. Lasers Surg Med. 2012;44:588–96. https://doi.org/10.1002/lsm.22050 DOI: https://doi.org/10.1002/lsm.22050
Gursoy H, Ozcakir-Tomruk C, Tanalp J, Yilmaz S. Photodynamic therapy in dentistry: a literature review. Clin Oral Invest. 2013;17:1113–25. https://doi.org/10.1007/s00784-012-0845-7 DOI: https://doi.org/10.1007/s00784-012-0845-7
Arany PR. Photobiomodulation-activated latent transforming growth factor-β1: a critical clinical therapeutic pathway and an endogenous optogenetic tool for discovery. Photobiomodul Photomed Laser Surg. 2022;40:136–47. https://doi.org/10.1089/photob.2021.0109 DOI: https://doi.org/10.1089/photob.2021.0109
Arany PR, Cho A, Hunt TD, et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentia-tion for regeneration. Sci Transl Med. 2014;28(238):238ra69. https://doi.org/10.1126/scitranslmed.3008234 DOI: https://doi.org/10.1126/scitranslmed.3008234
Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374:1897–908. https://doi.org/10.1016/S0140-6736(09)61522-1 DOI: https://doi.org/10.1016/S0140-6736(09)61522-1
Bisset L, Coombes B, Vicenzino B. Tennis elbow. Clin Evid. 2011;27:1117.
IASP. Global year against musculoskeletal pain [Internet]; 2010. Available from: http://tinyurl.com/IASPlaser [October 2023]
Haldeman S, Carroll L, Cassidy JD, Schubert J, Nygren A. The bone and joint decade 2000–2010 task force on neck pain and its associated disorders: executive summary. J Manipulat Physiol Therap. 2009;32:S7–9. https://doi.org/10.1016/j.jmpt.2008.11.005 DOI: https://doi.org/10.1016/j.jmpt.2008.11.005
Favejee MM, Huisstede BM, Koes BW. Frozen shoulder: the effectiveness of conservative and surgical interventions – systematic review. Br J Sports Med. 2011;45:49–56. https://doi.org/10.1136/bjsm.2010.071431 DOI: https://doi.org/10.1136/bjsm.2010.071431
Carcia CR, Martin RL, Houck J, Wukich DK. Achilles pain, stiffness, and muscle power deficits: achilles tendinitis. J Orthopaed Sports Phys Ther. 2010;40:A1–26. https://doi.org/10.2519/jospt.2010.0305 DOI: https://doi.org/10.2519/jospt.2010.0305
Peterson DE, Bensadoun RJ, Roila F. Management of oral and gastrointestinal mucositis: ESMO Clinical Practice Guidelines. Ann Oncol. 2010;21:261–5. https://doi.org/10.1093/annonc/mdq197 DOI: https://doi.org/10.1093/annonc/mdq197
Migliorati C, Hewson I, Lalla RV, et al. Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Support Care Cancer. 2013;21:333–41. https://doi.org/10.1007/s00520-012-1605-6 DOI: https://doi.org/10.1007/s00520-012-1605-6
Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014;30:465–75. https://doi.org/10.1016/j.dental.2014.02.006 DOI: https://doi.org/10.1016/j.dental.2014.02.006
Holder MJ, Milward MR, Palin WM, Hadis MA, Cooper PR. Effects of red light-emitting diode irradiation on dental pulp cells. J Dent Res. 2012;9:961–6. https://doi.org/10.1177/0022034512456040
Alnagar AM, Mahmoud M, Butknecht N, et al. Effect of photobiomodulation therapy on regenerative endodontic procedures: a scoping review. Lasers Dent Sci. 2019;3:227–37. https://doi.org/10.1007/s41547-019-00076-5 DOI: https://doi.org/10.1007/s41547-019-00076-5
Sourvanos D, Poon J, Lander B, et al. Improving titanium implant stability with photobiomodulation: a review and meta-analysis of irradi-ation parameters. Photobiomodul Photomed Laser Surg. 2023;41:93–103. https://doi.org/10.1089/photob.2022.0161 DOI: https://doi.org/10.1089/photob.2022.0161
Courtois E, Bouleftour W, Guy JB, et al. Mechanisms of PhotoBioModulation (PBM) focused on oral mucositis prevention and treatment: a scoping review. BMC Oral Health. 2021;29(21): 220. https://doi.org/10.1186/s12903-021-01574-4 DOI: https://doi.org/10.1186/s12903-021-01574-4
Low-level laser therapy for preventing or treating oral mucositis caused by radiotherapy or chemotherapy. National Institute for Health and Care Excellence, Interventional procedure guidance (IPG615). Published 23 May 2018.
Stajer A, Kajari S, Gajdacs M, Musah-Eroje A, Barath Z. Utility of photodynamic therapy in dentistry: current concepts. Dent J. 2020;8:43–65. https://doi.org/10.3390/dj8020043 DOI: https://doi.org/10.3390/dj8020043
Williams JA, Pearson GJ, Colles MJ, Wilson M. The photo-activated antibacterial action of toluidine blue O in a collagen matrix and in carious dentine. Caries Res. 2004;38:530–6. https://doi.org/10.1159/000080582 DOI: https://doi.org/10.1159/000080582
Araújo NC, Fontana CR, Bagnato VS, Gerbi MEM. Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med Sci. 2014;29:629–35. https://doi.org/10.1007/s10103-013-1369-3 DOI: https://doi.org/10.1007/s10103-013-1369-3
Pinheiro AL, Schenka AA, Neto AA, et al. Photodynamic therapy in endodontic treatment of deciduous teeth. Lasers Med Sci. 2009;24:521–6. https://doi.org/10.1007/s10103-008-0562-2 DOI: https://doi.org/10.1007/s10103-008-0562-2
Guglielmi CAB, Simionato MR, Ramalho KM, Imparato JCP, Pinheiro SL, Luz MAAC. Clinical use of photodynamic antimicrobial chemothera-py for the treatment of deep carious lesions. J Biomed Opt. 2011;16:088003. https://doi.org/10.1117/1.3611009 DOI: https://doi.org/10.1117/1.3611009
Wainwright M, Crossley KB. Photosensitising agents -circumventing resistance and breaking down biofilms: a review. Int Biodeteriorat Biodegradat. 2004;53:119–26. https://doi.org/10.1038/s41598-017-05706-1 DOI: https://doi.org/10.1016/j.ibiod.2003.11.006
Yoshida A, Sasaki H, Toyama T, et al. Antimicrobial effect of blue light using Porhyromonas gingivalis pigment. Sci Rep. 2017;7: 5225. https://doi.org/10.1038/s41598-017-05706-1 DOI: https://doi.org/10.1038/s41598-017-05706-1
Mohamad SA, Megson IL, Kean AH. Blue light photoinhibition of Stretococcus mutans: potential chromophores and mechanisms. Lasers Dent Sci. 2023;7:195–205. https://doi.org/10.1007/s41547-023-00204-2 DOI: https://doi.org/10.1007/s41547-023-00204-2
de Sousa FL, Lima RA, Zanin IC, Klein MI, Janal MN, Duarte S. Effect of twice-daily blue light treatment on matrix-rich biofilm develop-ment. PLoS One. 2015;10:e0131941. https://doi.org/10.1371/journal.pone.0131941 DOI: https://doi.org/10.1371/journal.pone.0131941
Otali D, Al Diffalha S, Grizzle WE. Biological, medical and other tissue variables affecting biospecimen utilisation. Biopreserv Biobank. 2019;17:258–64. https://doi.org/10.1089/bio.2018.0094 DOI: https://doi.org/10.1089/bio.2018.0094
Ten Cate AR. Oral histology: development, structure, and function. Mosby, St. Louis, ©1998 5th ed. 1998, p. 152.
Zijp JR, ten Bosch JJ. Thoretical model for the scattering of light by dentine and comparison with measurements. Appl Opt. 1993;32:411–5. https://doi.org/10.1364/AO.32.000411 DOI: https://doi.org/10.1364/AO.32.000411
ried D, Glena RE, Featherstone JDB, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wave-lengths. Appl Opt. 1995;34:1278–85. https://doi.org/10.1364/AO.34.001278 DOI: https://doi.org/10.1364/AO.34.001278
Kienle A, Michels R, Hibst R. Magnification, a new look at a long-known optical property of dentin. J Dent Res. 2006;85:955–59. https://doi.org/10.1177/154405910608501017 DOI: https://doi.org/10.1177/154405910608501017
Holder MJ, Milward MR, Palin WM, Hadis MA, Cooper PR. Effects of red light-emitting diode irradiation on dental pulp cells. J Dent Res. 2012;91:961–6. https://doi.org/10.1177/0022034512456040 DOI: https://doi.org/10.1177/0022034512456040
Turrioni A, Basso F, Alonso J, et al. Transdentinal cell photobiomodulation using different wavelengths. Opererat Dent. 2014;40:102–11. https://doi.org/10.2341/13-370-L DOI: https://doi.org/10.2341/13-370-L
Turrioni AP, de Oliveira CF, Basso FG, et al. Correlation between light transmission and permeability of human dentine. Lasers Med Sci. 2012;27:191–6. https://doi.org/10.1007/s10103-011-0931-0 DOI: https://doi.org/10.1007/s10103-011-0931-0
Turrioni AP, Alonso JR, Basso FG, et al. LED light attenuation through human dentine: a first step towards pulp photobiomodulation after cavity preparation. Am J Dent. 2013;26:319–23.
Parker S. Laser-tissue interactions. Br Dent J. 2007;202:73–81. https://doi.org/10.1038/bdj.2007.24 DOI: https://doi.org/10.1038/bdj.2007.24
Spitzer D, ten Bosch JJ. The absorption and scattering of light in bovine and dental enamel. Calcified Tissue Res. 1975;17:129–37. https://doi.org/10.1007/BF02547285 DOI: https://doi.org/10.1007/BF02547285
Meglinski IV, Matcher SJ. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol Measure. 2002;23:741–53. https://doi.org/10.1088/0967-3334/23/4/312 DOI: https://doi.org/10.1088/0967-3334/23/4/312
Published
Issue
Section
License
Copyright (c) 2024 Mohammed A. Hadis, Adrian C. Shortall, William M. Palin
This work is licensed under a Creative Commons Attribution 4.0 International License.