An in-vitro study on effects of laser activation on dye penetration in human root dentin

Authors

  • Clara Isabel Anton y Otero Division of Cariology and Endodontology, CUMD – University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
  • Laurine Marger Division of Cariology and Endodontology, CUMD – University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
  • Enrico di Bella Division of Cariology and Endodontology, CUMD – University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
  • Albert Feilzer Department of Dental Material Sciences, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
  • Ivo Krejci Division of Cariology and Endodontology, CUMD – University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
  • Marwa Abdelaziz Division of Cariology and Endodontology, CUMD – University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland

DOI:

https://doi.org/10.2340/biid.v11.40311

Keywords:

Laser-activated irrigation, disinfection, cleaning, irrigation, laser

Abstract

Objective: To evaluate the penetration of a dye in root dentin after activation with different laser wavelengths.

Materials: Palatal roots of 38 human molars were enlarged and disinfected. Irrigation activation was performed with an Er:YAG laser: @50 mJ, 15 Hz (Er:YAG); a 9.3 µm CO2 laser: @40% power (CO2); diode lasers 455 nm/970 nm: @0.8 W, 15 Hz (D455, D970) and 808/980 nm: @1 W (D808, D980) and compared to positive control: etching with 35% H3PO4 (POS); negative control: water (NEG) and conventional needle irrigation: NaOCl and ethylenediaminetetraacetic acid (EDTA) (CONV). Methylene blue solution was introduced in the canal and laser-activated or left untouched for 100 s before the roots were dried and cut into horizontal slices. Dye penetration was automatically calculated by color recognition of two samples per root third (n = 8 per group in each coronal, middle and apical root thirds). The presence and absence of a smear layer was checked in two additional samples of the negative and positive control under scanning electron microscopy (SEM). 

Results: Full-depth infiltration was not achieved in any group. Dye penetration in CONV was significantly less than in Er:YAG, CO2, POS, D455, D970, D808 and similar to NEG and D980 when results of different root thirds were pooled.

Conclusion: Laser activation using certain parameters enhanced dye penetration compared to conventional needle irrigation with NaOCl and EDTA (CONV).

Downloads

Download data is not yet available.

References

Peters L, Wesselink P, Moorer W. Penetration of bacteria in bovine root dentine in vitro. Int Endod J. 2000;33(1):28–36. https://doi.org/10.1046/j.1365-2591.2000.00268.x DOI: https://doi.org/10.1046/j.1365-2591.2000.00268.x

Metzger Z, Solomonov M, Kfir A. The role of mechanical instrumentation in the cleaning of root canals. Endodontic Top. 2013;29(1): 87–109. https://doi.org/10.1111/etp.12048 DOI: https://doi.org/10.1111/etp.12048

Zehnder M. Root canal irrigants. J Endod. 2006;32(5):389–98. https://doi.org/10.1016/j.joen.2005.09.014 DOI: https://doi.org/10.1016/j.joen.2005.09.014

Mader CL, Baumgartner JC, Peters DD. Scanning electron microscopic investigation of the smeared layer on root canal walls. J Endod. 1984;10(10):477–83. https://doi.org/10.1016/S0099-2399(84)80204-6 DOI: https://doi.org/10.1016/S0099-2399(84)80204-6

Violich DR, Chandler NP. The smear layer in endodontics – a review. Int Endod J. 2010;43(1):2–15. https://doi.org/10.1111/j.1365-2591.2009.01627.x DOI: https://doi.org/10.1111/j.1365-2591.2009.01627.x

Orstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol. 1990;6(4):142–9. https://doi.org/10.1111/j.1600-9657.1990.tb00409.x DOI: https://doi.org/10.1111/j.1600-9657.1990.tb00409.x

Akcay M, et al. Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study. Clin Oral Investig. 2017;21(7):2205–12. https://doi.org/10.1007/s00784-016-2013-y DOI: https://doi.org/10.1007/s00784-016-2013-y

Peters OA, et al. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod. 2001;27(1):1–6. https://doi.org/10.1097/00004770-200101000-00001 DOI: https://doi.org/10.1097/00004770-200101000-00001

Siqueira JF, Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34(11):1291–01.e3. https://doi.org/10.1016/j.joen.2008.07.028 DOI: https://doi.org/10.1016/j.joen.2008.07.028

Ghorbanzadeh A, et al. Penetration depth of sodium hypochlorite in dentinal tubules after conventional irrigation, passive ultrasonic agitation and Nd:YAG laser activated irrigation. J Lasers Med Sci. 2016;7(2):105–11. https://doi.org/10.15171/jlms.2016.18 DOI: https://doi.org/10.15171/jlms.2016.18

Giardino L, et al. Comparative evaluation of the penetration depth into dentinal tubules of three endodontic irrigants. Materials (Basel). 2021 Oct 6;14(19):5853. https://doi.org/10.3390/ma14195853 DOI: https://doi.org/10.3390/ma14195853

Giardino L, et al. Surface tension comparison of four common root canal irrigants and two new irrigants containing antibiotic. J Endod. 2006;32(11):1091–3. https://doi.org/10.1016/j.joen.2006.05.008 DOI: https://doi.org/10.1016/j.joen.2006.05.008

Walsh LJ, George R. Activation of alkaline irrigation fluids in endodontics. Materials (Basel). 2017 Oct 23;10(10):1214. https://doi.org/10.3390/ma10101214 DOI: https://doi.org/10.3390/ma10101214

DiVito E, Peters OA, Olivi G. Effectiveness of the erbium: YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med Sci. 2012;27(2):273–80. https://doi.org/10.1007/s10103-010-0858-x DOI: https://doi.org/10.1007/s10103-010-0858-x

Ballal NV, Gandhi P, Shenoy PA, Dummer PMH. Evaluation of various irrigation activation systems to eliminate bacteria from the root canal system: a randomized controlled single blinded trial. J Dent. 2020;99:103412. https://doi.org/10.1016/j.jdent.2020.103412 DOI: https://doi.org/10.1016/j.jdent.2020.103412

Anton y Otero CI, et al. Micromorphology of root canal walls after laser activated irrigation. Eur J of Prosthodont Restor Dent. 2023; 32:109-119. https://doi.org/10.1922/ejprd_2600antonyotero11

Jurič IB, Anić I. The Use of lasers in disinfection and cleanliness of root canals: a review. Acta Stomatol Croat. 2014;48(1):6–15. https://doi.org/10.15644/asc48/1/1 DOI: https://doi.org/10.15644/asc48/1/1

Gutknecht N, et al. Diode laser radiation and its bactericidal effect in root canal wall dentin. J Clin Laser Med Surg. 2000;18(2):57–60. https://doi.org/10.1089/clm.2000.18.57 DOI: https://doi.org/10.1089/clm.2000.18.57

Anton y Otero, CI, et al. Laser-activated irrigation: cavitation and streaming effects from dental lasers. Frontiers. 2022;3: 1010916 -26. https://doi.org/10.3389/fdmed.2022.1010916 DOI: https://doi.org/10.3389/fdmed.2022.1010916

Anton y Otero CI et al. Activation of endodontic irrigants using a 9300nm CO2 and diode lasers: am in-vitro proof of concept model. Am J Dent. 2024 Feb;37(1):39-46. PMID: 38458982

Paque F, et al. Tubular sclerosis rather than the smear layer impedes dye penetration into the dentine of endodontically instrumented root canals. Int Endod J. 2006;39(1):18–25. https://doi.org/10.1111/j.1365-2591.2005.01042.x DOI: https://doi.org/10.1111/j.1365-2591.2005.01042.x

Gu Y, et al. Effect of different agitation techniques on the penetration of irrigant and sealer into dentinal tubules. Photomed Laser Surg. 2016;35(2):71–7. https://doi.org/10.1089/pho.2016.4125 DOI: https://doi.org/10.1089/pho.2016.4125

Thaler A, et al. Influence of tooth age and root section on root dentine dye penetration. Int Endod J. 2008;41(12):1115–22. https://doi.org/10.1111/j.1365-2591.2008.01486.x DOI: https://doi.org/10.1111/j.1365-2591.2008.01486.x

Giardino L, Cavani F, Generali L. Sodium hypochlorite solution penetration into human dentine: a histochemical evaluation. Int Endod J. 2017;50(5):492–8. https://doi.org/10.1111/iej.12641 DOI: https://doi.org/10.1111/iej.12641

Ørstavik D, Qvist V, Stoltze K. A multivariate analysis of the outcome of endodontic treatment. Eur J Oral Sci. 2004;112(3):224–30. https://doi.org/10.1111/j.1600-0722.2004.00122.x DOI: https://doi.org/10.1111/j.1600-0722.2004.00122.x

Mjör IA, et al. The structure of dentine in the apical region of human teeth. Int Endod J. 2001;34(5):346–53. https://doi.org/10.1046/j.1365-2591.2001.00393.x DOI: https://doi.org/10.1046/j.1365-2591.2001.00393.x

Ribeiro RG, et al. Dentin permeability of the apical third in different groups of teeth. Braz Dent J. 2010;21(3):216–9. https://doi.org/10.1590/S0103-64402010000300007 DOI: https://doi.org/10.1590/S0103-64402010000300007

Gu LS, et al. Review of contemporary irrigant agitation techniques and devices. J Endod. 2009;35(6):791–804. https://doi.org/10.1016/j.joen.2009.03.010 DOI: https://doi.org/10.1016/j.joen.2009.03.010

Paqué F, Barbakow F, Peters OA. Root canal preparation with Endo-Eze AET: changes in root canal shape assessed by micro-computed tomography. Int Endod J. 2005;38:456–64. https://doi.org/10.1111/j.1365-2591.2005.00968.x DOI: https://doi.org/10.1111/j.1365-2591.2005.00968.x

Ortigara GA, et al. Micro-computed tomographic evaluation of smear layer and accumulated hard tissue debris removal. J Conserv Dent. 2020;23(3):249–53. https://doi.org/10.4103/JCD.JCD_293_20 DOI: https://doi.org/10.4103/JCD.JCD_293_20

Agarwal A, et al. Evaluation of apical vapor lock formation and comparative evaluation of its elimination using three different techniques: an in vitro study. J Contemp Dent Pract. 2017;18(9):790–4. https://doi.org/10.5005/jp-journals-10024-2128 DOI: https://doi.org/10.5005/jp-journals-10024-2128

Zou L, et al. Penetration of sodium hypochlorite into dentin. J Endod. 2010;36(5):793–6. https://doi.org/10.1016/j.joen.2010.02.005 DOI: https://doi.org/10.1016/j.joen.2010.02.005

De Groot SD, et al. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization. Int Endod J. 2009;42(12):1077–83. https://doi.org/10.1111/j.1365-2591.2009.01634.x DOI: https://doi.org/10.1111/j.1365-2591.2009.01634.x

Sim TP, et al. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J. 2001;34(2):120–32. https://doi.org/10.1111/j.1365-2591.2009.01634.x DOI: https://doi.org/10.1046/j.1365-2591.2001.00357.x

Rajeshwari, et al. An evaluation of horizontal depth of penetration of various irrigants into the dentinal tubules when used alone and in combination with diode laser: an in vitro study. J Interdiscip Dent. 2014;4(3):130–4. https://doi.org/10.1111/j.1365-2591.2009.01634.x DOI: https://doi.org/10.4103/2229-5194.147331

Rajakumaran A, Ganesh, A. Comparative evaluation of depth of penetration of root canal irrigant after using manual, passive ultrasonic, and diode laser-assisted irrigant activation technique. J Pharm Bioall Sci. 2019;11(Suppl 2):S216–S220. https://doi.org/10.4103/JPBS.JPBS_300_18 DOI: https://doi.org/10.4103/JPBS.JPBS_300_18

Virdee SS, et al. The influence of irrigant activation, concentration and contact time on sodium hypochlorite penetration into root dentine: an ex vivo experiment. Int Endod J. 2020;53(7):986–97. https://doi.org/10.1111/iej.13290 DOI: https://doi.org/10.1111/iej.13290

Mansoorkhani H, Mahmoudi F. The importance of surface tension in endodontic irrigation: a review study. Arch Dent Res. 2023;12;76–80. https://doi.org/10.18231/j.adr.2022.014 DOI: https://doi.org/10.18231/j.adr.2022.014

Published

2024-04-05