The effect of orthodontic bracket base shape on shear bond strength to human enamel, an in vitro study
DOI:
https://doi.org/10.2340/biid.v11.40585Keywords:
shear bond strength, shaped brackets, orthodontic bracket base shape, adhesive remnant indexAbstract
The purpose of this study was to evaluate the in vitro effect of orthodontic bracket base shape on shear bond strength (SBS) to human enamel and assess the nature of debonding fractures using the Adhesive Remnant Index (ARI). Orthodontic brackets with different-shaped bases (flower, heart, rectangle) were bonded to 120 extracted human third molars. Shear bond strength was measured using a Servohydraulic Test System at 24 h and 2 months after bonding. Adhesive Remnant Index scores were evaluated under 10x magnification to assess the amount of resin left on the tooth. The control bracket (rectangular base shape) had the highest mean SBS (26.8 ± 8.2 megapascals [MPa]), and significantly differed from the flower (17.2 ± 4.4 MPa) and heart (18.9 ± 3.5 MPa) base shapes (p < 0.001). The mean SBS between debonding times at 24 h (21.5 ± 7.4 MPa) and 2 months (20.4 ± 6.7 MPa) were not statistically significant (p > 0.05). Analysis of ARI scores showed a significant difference between flower-24 h versus heart-2 months (p = 0.039), flower-24 h versus heart-24 h (p = 0.004), and control-2 months versus heart-24 h (p = 0.015). Bracket base shape influenced SBS, with the rectangular base shape having a higher mean SBS compared to flower and heart base shapes. Variations in ARI scores occurred based on bracket shape and were of a mixed adhesive-cohesive nature. All bracket shapes had bond strengths above the clinically acceptable range of 6–8 MPa, and may thus provide adequate SBS in a clinical situation.
Downloads
References
Wiltshire WA, Noble J. Clinical and laboratory perspectives of improved orthodontic bonding to normal, hypoplastic, and fluorosed enamel. Semin Orthod. 2010;16(1):55–65. https://doi.org/10.1053/j.sodo.2009.12.005 DOI: https://doi.org/10.1053/j.sodo.2009.12.005
MacColl GA, Rossouw PE, Titley KC, Yamin C. The relationship between bond strength and orthodontic bracket base surface area with conventional and microetched foil-mesh bases. Am J Orthod Dentofacial Orthop. 1998;113(3):276–281. https://doi.org/10.1016/S0889-5406(98)70297-5 DOI: https://doi.org/10.1016/S0889-5406(98)70297-5
Powers JM, Kim HB, Turner DS. Orthodontic adhesives and bond strength testing. Semin Orthod. 1997;3(3):147–156. https://doi.org/10.1016/S1073-8746(97)80065-5 DOI: https://doi.org/10.1016/S1073-8746(97)80065-5
Jacobson A. Contemporary orthodontics, 2nd ed: William R. Proffit, Henry W. Fields, Jr. (and 4 additional contributors). St Louis: Mosby-Year Book, 1992; 688 pages; 1681 illustrations. Am J Orthod Dentofacial Orthop. 1993;104(6):620–620. https://doi.org/10.1016/S0889-5406(05)80448-2 DOI: https://doi.org/10.1016/S0889-5406(05)80448-2
Thind BS, Stirrups DR, Lloyd CH. A comparison of tungsten-quartz-halogen, plasma arc and light-emitting diode light sources for the polymerization of an orthodontic adhesive. Eur J Orthod. 2006;28(1):78–82. https://doi.org/10.1093/ejo/cji076 DOI: https://doi.org/10.1093/ejo/cji076
Brantley WA, Eliades T. Orthodontic materials: Scientific and clinical aspects. Stuttgart: Thieme; 2001. https://doi.org/10.1055/b-002-43889. ISBN: 9780865779297 (print), 9781604060652 (online). DOI: https://doi.org/10.1055/b-002-43889
Pham D, Bollu P, Chaudhry K, Subramani K. Comparative evaluation of orthodontic bracket base shapes on shear bond strength and adhesive remnant index: an in vitro study. J Clin Exp Dent. 2017;9(7):e848. https://doi.org/10.4317/jced.53869 DOI: https://doi.org/10.4317/jced.53869
Patel N, Bollu P, Chaudhry K, Subramani K. The effect of orthodontic bracket pad shape on shear bond strength, an in vitro study on human enamel. J Clin Exp Dent. 2018;10(8):e789. DOI: https://doi.org/10.4317/jced.55121
Eliades T, Brantley W. The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur J Orthod. 2000;22(1):13–23. https://doi.org/10.1093/ejo/22.1.13 DOI: https://doi.org/10.1093/ejo/22.1.13
Bishara SE, Gordan VV, VonWald L, Jakobsen JR. Shear bond strength of composite, glass ionomer, and acidic primer adhesive systems. Am J Orthod Dentofacial Orthop. 1999;115(1):24–28. https://doi.org/10.1016/S0889-5406(99)70312-4 DOI: https://doi.org/10.1016/S0889-5406(99)70312-4
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276–282. https://doi.org/10.11613/BM.2012.031 DOI: https://doi.org/10.11613/BM.2012.031
Cucu M, Driessen CH, Ferreira PD. The influence of orthodontic bracket base diameter and mesh size on bond strength. SADJ (Houghton). 2002;57(1):16–20.
Dickinson PT, Powers JM. Evaluation of fourteen direct-bonding orthodontic bases. Am J Orthod. 1980;78(6):630–639. DOI: https://doi.org/10.1016/0002-9416(80)90202-X
Van Noort R, Noroozi S, Howard IC, Cardew G. A critique of bond strength measurements. J Dent. 1989;17(2):61–67. https://doi.org/10.1016/0300-5712(89)90131-0 DOI: https://doi.org/10.1016/0300-5712(89)90131-0
Klocke A, Kahl-Nieke B. Influence of force location in orthodontic shear bond strength testing. Dent Mater. 2005;21(5):391–396. https://doi.org/10.1016/j.dental.2004.07.004 DOI: https://doi.org/10.1016/j.dental.2004.07.004
Retief DH. Failure at the dental adhesive-etched enamel interface. J Oral Rehabil. 1974;1(3):265–284. https://doi.org/10.1111/j.1365-2842.1974.tb01438.x DOI: https://doi.org/10.1111/j.1365-2842.1974.tb01438.x
Dall’Igna CM, Marchioro EM, Spohr AM, Mota EG. Effect of curing time on the bond strength of a bracket-bonding system cured with a light-emitting diode or plasma arc light. Eur J Orthod. 2011;33(1):55–59. https://doi.org/10.1093/ejo/cjq027 DOI: https://doi.org/10.1093/ejo/cjq027
Nkenke E, Hirschfelder U, Martus P, Eberhard H. Evaluation of the bond strength of different bracket-bonding systems to bovine enamel. Eur J Orthod. 1997;19(3):259–270. https://doi.org/10.1093/ejo/19.3.259 DOI: https://doi.org/10.1093/ejo/19.3.259
Mundhada VV, Jadhav VV, Reche A. A review on orthodontic brackets and their application in clinical orthodontics. Cureus. 2023 Oct 7;15(10):e46615. https://doi.org/10.7759/cureus.46615 DOI: https://doi.org/10.7759/cureus.46615
Finnema KJ, Özcan M, Post WJ, Ren Y, Dijkstra PU. In-vitro orthodontic bond strength testing: a systematic review and meta-analysis. Am J Orthod Dentofacial Orthop. 2010;137(5):615.e3–622.e3. https://doi.org/10.1016/j.ajodo.2009.12.021 DOI: https://doi.org/10.1016/j.ajodo.2009.12.021
Øgaard B, Fjeld M. The enamel surface and bonding in orthodontics. Semin Orthod. 2010;16(1):37–48. https://doi.org/10.1053/j.sodo.2009.12.003 DOI: https://doi.org/10.1053/j.sodo.2009.12.003
O’Brien KD, Watts DC, Read MJF. Residual debris and bond strength – is there a relationship? Am J Orthod Dentofacial Orthop. 1988;94(3):222–230. https://doi.org/10.1016/0889-5406(88)90031-5 DOI: https://doi.org/10.1016/0889-5406(88)90031-5
Rohini N, Sunil G, Ram RR, Ranganayakulu I, Vijaya Krishna B. Impact of a high power light-emitting diode unit with reduced curing times on the shear bond strength of orthodontic brackets and their adhesive remnant index scores. Cureus. 2023 Jun 2;15(6):e39855. https://doi.org/10.7759/cureus.39855 DOI: https://doi.org/10.7759/cureus.39855
Fernandes ACBCJ, Jesus VC, Noruziaan S, Vilela OFGG, Somarin KK, França R, et al. The effect of different pre-treatment methods on the shear bond strength of orthodontic tubes: an in vitro study. Int J Med Health Sci. 2022;16(12):199–202.
Published
Issue
Section
License
Copyright (c) 2024 Ziana Esmail, William Wiltshire, Fabio H. S. L. Pinheiro, Carolina M. Frota, Rodrigo França
This work is licensed under a Creative Commons Attribution 4.0 International License.