Evaluation of treatment parameters for focused-extracorporeal shock wave therapy in knee osteoarthritis patients with bone marrow lesions: a pilot study
DOI:
https://doi.org/10.2340/jrm.v56.13207Keywords:
Bone marrow lesions, Extracorporeal shock wave therapy, Knee osteoarthritis, Single-case experimental designAbstract
Objectives: To evaluate the effect of different dosage parameters of focused-extracorporeal shock wave therapy on pain and physical function in knee osteoarthritis patients with bone marrow lesions. In addition, to investigate pathophysiological changes based on imaging and biomarker measures.
Methods: Using a single-case experimental design, a total of 12 participants were randomly allocated in 4 equal groups of 3 to receive different dosages of focused-extracorporeal shock wave therapy. Each group received either 4 or 6 sessions of 1500 or 3000 shocks over 4 or 6 weekly sessions. Participants underwent repeated measurements during the baseline, intervention, and post-intervention phases for Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, aggregated locomotor function score and pressure pain threshold. Imaging and inflammatory biomarker outcomes were measured at baseline and 3 months following the intervention.
Results: The group receiving the highest dosage of focused-extracorporeal shock wave therapy showed clinical improvements superior to those of participants in the other 3 groups. Statistically significant changes during the follow-up phase in contrast to baseline measurements for the WOMAC score (Tau-U= –0.88, p < 0.001), aggregated locomotor function score (Tau-U= –0.77, p = 0.002), and pressure pain threshold (Tau-U= 0.54, p = 0.03) were observed. Bone marrow lesion and inflammatory cytokines demonstrated no change.
Conclusion: A dose-dependent effect for focused-extracorporeal shock wave therapy on osteoarthritis-related symptoms was suggested. However, these improvements were not associated with changes in the underlying pathophysiological mechanisms.
Downloads
References
Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 2014; 28: 5–15.
https://doi.org/10.1016/j.berh.2014.01.004 DOI: https://doi.org/10.1016/j.berh.2014.01.004
Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 2006; 20: 3–25.
https://doi.org/10.1016/j.berh.2005.09.007 DOI: https://doi.org/10.1016/j.berh.2005.09.007
Deveza LA, Melo L, Yamato TP, Mills K, Ravi V, Hunter DJ. Knee osteoarthritis phenotypes and their relevance for outcomes: a systematic review. Osteoarth Cartil 2017; 25: 1926–1941.
https://doi.org/10.1016/j.joca.2017.08.009 DOI: https://doi.org/10.1016/j.joca.2017.08.009
Collins JA, Beutel BG, Strauss E, Youm T, Jazrawi L. Bone marrow edema: chronic bone marrow lesions of the knee and the asso-ciation with osteoarthritis. Bull Hosp Jt Dis (2013) 2016; 74: 24–36.
Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 2003; 139: 330–336.
https://doi.org/10.7326/0003-4819-139-5_part_1-200309020-00008 DOI: https://doi.org/10.7326/0003-4819-139-5_Part_1-200309020-00008
Daheshia M, Yao JQ. The bone marrow lesion in osteoarthritis. Rheumatol Int 2011; 31: 143–148.
https://doi.org/10.1007/s00296-010-1454-x DOI: https://doi.org/10.1007/s00296-010-1454-x
Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134: 541–549.
https://doi.org/10.7326/0003-4819-134-7-200104030-00007 DOI: https://doi.org/10.7326/0003-4819-134-7-200104030-00007
Ogden JA, Toth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res 2001: 8–17.
https://doi.org/10.1097/00003086-200106000-00003 DOI: https://doi.org/10.1097/00003086-200106000-00003
Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg 2015; 24: 143–146.
https://doi.org/10.1016/j.ijsu.2015.06.059 DOI: https://doi.org/10.1016/j.ijsu.2015.06.059
Gao F, Sun W, Li Z, Guo W, Wang W, Cheng L, et al. Extracorporeal shock wave therapy in the treatment of primary bone marrow edema syndrome of the knee: a prospective randomised controlled study. BMC Musculoskelet Disord 2015; 16: 379.
https://doi.org/10.1186/s12891-015-0837-2 DOI: https://doi.org/10.1186/s12891-015-0837-2
Kang S, Gao F, Han J, Mao T, Sun W, Wang B, et al. Extracorporeal shock wave treatment can normalize painful bone marrow edema in knee osteoarthritis: a comparative historical cohort study. Medicine (Baltimore) 2018; 97: e9796.
https://doi.org/10.1097/MD.0000000000009796 DOI: https://doi.org/10.1097/MD.0000000000009796
Sansone V, Romeo P, Lavanga V. Extracorporeal shock wave therapy is effective in the treatment of bone marrow edema of the medial compartment of the knee: a comparative study. Med Princ Pract 2017; 26: 23–29.
https://doi.org/10.1159/000452836 DOI: https://doi.org/10.1159/000452836
Vitali M, Naim Rodriguez N, Pedretti A, Drossinos A, Pironti P, Di Carlo G, et al. Bone marrow edema syndrome of the medial femo-ral condyle treated with extracorporeal shock wave therapy: a clinical and MRI retrospective comparative study. Arch Phys Med Rehabil 2018; 99: 873–879.
https://doi.org/10.1016/j.apmr.2017.10.025 DOI: https://doi.org/10.1016/j.apmr.2017.10.025
Kim JH, Kim JY, Choi CM, Lee JK, Kee HS, Jung KI, et al. The dose-related effects of extracorporeal shock wave therapy for knee osteoarthritis. Ann Rehabil Med 2015; 39: 616–623.
https://doi.org/10.5535/arm.2015.39.4.616 DOI: https://doi.org/10.5535/arm.2015.39.4.616
Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 1986; 29: 1039–1049.
https://doi.org/10.1002/art.1780290816 DOI: https://doi.org/10.1002/art.1780290816
Jinks C, Jordan K, Croft P. Measuring the population impact of knee pain and disability with the Western Ontario and McMaster Uni-versities Osteoarthritis Index (WOMAC). Pain 2002; 100: 55–64.
https://doi.org/10.1016/s0304-3959(02)00239-7 DOI: https://doi.org/10.1016/S0304-3959(02)00239-7
McCarthy CJ, Oldham JA. The reliability, validity and responsiveness of an aggregated locomotor function (ALF) score in patients with osteoarthritis of the knee. Rheumatology (Oxford) 2004; 43: 514–517.
https://doi.org/10.1093/rheumatology/keh081 DOI: https://doi.org/10.1093/rheumatology/keh081
Jones DH, Kilgour RD, Comtois AS. Test-retest reliability of pressure pain threshold measurements of the upper limb and torso in young healthy women. J Pain 2007; 8: 650–656.
https://doi.org/10.1016/j.jpain.2007.04.003 DOI: https://doi.org/10.1016/j.jpain.2007.04.003
Moss P, Sluka K, Wright A. The initial effects of knee joint mobilization on osteoarthritic hyperalgesia. Man Ther 2007; 12: 109–118.
https://doi.org/10.1016/j.math.2006.02.009 DOI: https://doi.org/10.1016/j.math.2006.02.009
Kamper SJ, Maher CG, Mackay G. Global rating of change scales: a review of strengths and weaknesses and considerations for de-sign. J Man Manip Ther 2009; 17: 163–170.
https://doi.org/10.1179/jmt.2009.17.3.163 DOI: https://doi.org/10.1179/jmt.2009.17.3.163
Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12: 177–190.
https://doi.org/10.1016/j.joca.2003.11.003 DOI: https://doi.org/10.1016/j.joca.2003.11.003
Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in associa-tion with osteoarthritis. Semin Arthritis Rheum 2012; 42: 105–118.
https://doi.org/10.1016/j.semarthrit.2012.03.009 DOI: https://doi.org/10.1016/j.semarthrit.2012.03.009
Lespessailles E, Jennane R. Assessment of bone mineral density and radiographic texture analysis at the tibial subchondral bone. Osteoporos Int 2012; 23: S871–876.
https://doi.org/10.1007/s00198-012-2167-7 DOI: https://doi.org/10.1007/s00198-012-2167-7
Sepriano A, Roman-Blas JA, Little RD, Pimentel-Santos F, Arribas JM, Largo R, et al. DXA in the assessment of subchondral bone mineral density in knee osteoarthritis – a semi-standardized protocol after systematic review. Semin Arthritis Rheum 2015; 45: 275–283.
https://doi.org/10.1016/j.semarthrit.2015.06.012 DOI: https://doi.org/10.1016/j.semarthrit.2015.06.012
Lane JD, Gast DL. Visual analysis in single case experimental design studies: brief review and guidelines. Neuropsychol Rehabil 2014; 24: 445–463.
https://doi.org/10.1080/09602011.2013.815636 DOI: https://doi.org/10.1080/09602011.2013.815636
Krasny-Pacini A, Evans J. Single-case experimental designs to assess intervention effectiveness in rehabilitation: a practical guide. Ann Phys Rehabil Med 2018; 61: 164–179.
https://doi.org/10.1016/j.rehab.2017.12.002 DOI: https://doi.org/10.1016/j.rehab.2017.12.002
Parker RI, Vannest KJ, Davis JL, Sauber SB. Combining nonoverlap and trend for single-case research: Tau-U. Behav Ther 2011; 42: 284–299.
https://doi.org/10.1016/j.beth.2010.08.006 DOI: https://doi.org/10.1016/j.beth.2010.08.006
Zhang YF, Liu Y, Chou SW, Weng H. Dose-related effects of radial extracorporeal shock wave therapy for knee osteoarthritis: a ran-domized controlled trial. J Rehabil Med 2021; 53: jrm00144.
https://doi.org/10.2340/16501977-2782 DOI: https://doi.org/10.2340/16501977-2782
Imamura M, Alamino S, Hsing WT, Alfieri FM, Schmitz C, Battistella LR. Radial extracorporeal shock wave therapy for disabling pain due to severe primary knee osteoarthritis. J Rehabil Med 2017; 49: 54–62.
https://doi.org/10.2340/16501977-2148 DOI: https://doi.org/10.2340/16501977-2148
Liao CD, Tsauo JY, Liou TH, Chen HC, Huang SW. Clinical efficacy of extracorporeal shockwave therapy for knee osteoarthritis: a systematic review and meta-regression of randomized controlled trials. Clin Rehabil 2019; 33: 1419–1430.
https://doi.org/10.1177/0269215519846942 DOI: https://doi.org/10.1177/0269215519846942
Al-Abbad H, Allen S, Morris S, Reznik J, Biros E, Paulik B, et al. The effects of shockwave therapy on musculoskeletal conditions based on changes in imaging: a systematic review and meta-analysis with meta-regression. BMC Musculoskelet Disord 2020; 21: 275.
https://doi.org/10.1186/s12891-020-03270-w DOI: https://doi.org/10.1186/s12891-020-03270-w
Gerdesmeyer L, Schaden W, Besch L, Stukenberg M, Doerner L, Muehlhofer H, et al. Osteogenetic effect of extracorporeal shock waves in human. Int J Surg 2015; 24: 115–119.
https://doi.org/10.1016/j.ijsu.2015.09.068 DOI: https://doi.org/10.1016/j.ijsu.2015.09.068
Shi L, Gao F, Sun W, Wang B, Guo W, Cheng L, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients. Osteoporos Int 2017; 28: 2945–2953.
https://doi.org/10.1007/s00198-017-4136-7 DOI: https://doi.org/10.1007/s00198-017-4136-7
Koolen MKE, Kruyt MC, Oner FC, Schaden W, Weinans H, van der Jagt OP. Effect of unfocused extracorporeal shockwave therapy on bone mineral content of twelve distal forearms of postmenopausal women: a clinical pilot study. Arch Osteoporos 2019; 14: 113.
https://doi.org/10.1007/s11657-019-0650-x DOI: https://doi.org/10.1007/s11657-019-0650-x
Eftekharsadat B, Jahanjoo F, Toopchizadeh V, Heidari F, Ahmadi R, Ghazani AB. Extracorporeal shockwave therapy and physiotherapy in patients with moderate knee osteoarthritis. Crescent J Med Biol Sci 2020; 7: 518–526.
Brenner SS, Klotz U, Alscher DM, Mais A, Lauer G, Schweer H, et al. Osteoarthritis of the knee – clinical assessments and inflammatory markers. Osteoarth Cartil 2004; 12: 469–475.
https://doi.org/10.1016/j.joca.2004.02.011 DOI: https://doi.org/10.1016/j.joca.2004.02.011
Published
How to Cite
License
Copyright (c) 2024 Hani Al-Abbadi, Jacqueline E. Reznik, Erik Biros, Bruce Paulik, Rob Will, Samuel Gane, Penny Moss, Anthony Wright
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized JRM contents is available freely online. The Foundation for Rehabilitation Medicine owns the copyright for all material published until volume 40 (2008), as from volume 41 (2009) authors retain copyright to their work and as from volume 49 (2017) the journal has been published Open Access, under CC-BY-NC licences (unless otherwise specified). The CC-BY-NC licenses allow third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.
From 2024, articles are published under the CC-BY licence. This license permits sharing, adapting, and using the material for any purpose, including commercial use, with the condition of providing full attribution to the original publication.