Hailey-Hailey Disease is Associated with Diabetes: A Population-based Cohort Study, Clinical Cohort Study, and Pedigree Analysis

Authors

  • Philip Curman Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
  • William Jebril Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
  • Carmella Evans-Molina Departments of Anatomy, Cell Biology, and Physiology; Biochemistry and Molecular Biology; Medicine; Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202; The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; Roudebush VA Medical Center, Indianapolis, IN 46202, USA
  • Etty Bachar-Wikstrom Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
  • Henrik Larsson Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
  • Martin Cederlöf Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
  • Jakob D. Wikström Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden

DOI:

https://doi.org/10.2340/actadv.v103.10436

Keywords:

diabetes, Hailey-Hailey disease, SPCA1, human leukocyte antigen, pedigree, cohort study

Abstract

Hailey-Hailey disease is a rare hereditary skin disease caused by mutations in the ATP2C1 gene encoding the secretory pathway Ca2+/Mn2+-ATPase 1 (SPCA1) protein. Extracutaneous manifestations of Hailey-Hailey disease are plausible but still largely unknown. The aim of this study was to explore the association between Hailey-Hailey disease and diabetes. A population-based cohort study of 347 individuals with Hailey-Hailey  disease was performed to assess the risks of type 1  diabetes and type 2 diabetes, using Swedish nationwide registries. Pedigrees from 2 Swedish families with Hailey-Hailey disease were also investigated: 1 with concurrent type 1 diabetes and HLA-DQ3, the other with type 2 diabetes. Lastly, a clinical cohort with 23 individuals with Hailey-Hailey disease and matched healthy controls was evaluated regarding diabetes. In the register data males with Hailey-Hailey disease had a 70% elevated risk of type 2 diabetes, whereas no  excess risk among women could be confirmed. In both pedigrees an unusually high inheritance for diabetes was observed. In the clinical cohort, individuals with Hailey-Hailey disease displayed a metabolic phenotype indicative of type 2 diabetes. Hailey-Hailey disease seems to act as a synergistic risk factor for diabetes. This study indicates, for the first time, an association between Hailey-Hailey disease and diabetes and represents human evidence that SPCA1 and the Golgi apparatus may be implicated in diabetes pathophysiology.

Downloads

Download data is not yet available.

References

Ben Lagha I, Ashack K, Khachemoune A. Hailey-Hailey disease: an update review with a focus on treatment data. Am J Clin Dermatol 2020; 21: 49-68.

https://doi.org/10.1007/s40257-019-00477-z DOI: https://doi.org/10.1007/s40257-019-00477-z

Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, et al. SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 2004; 322: 1204-1213.

https://doi.org/10.1016/j.bbrc.2004.07.128 DOI: https://doi.org/10.1016/j.bbrc.2004.07.128

Okunade GW, Miller ML, Azhar M, Andringa A, Sanford LP, Doetschman T, et al. Loss of the Atp2c1 secretory pathway Ca(2+)-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J Biol Chem 2007; 282: 26517-26527.

https://doi.org/10.1074/jbc.M703029200 DOI: https://doi.org/10.1074/jbc.M703029200

Sawicka J, Kutkowska-Kaźmierczak A, Woźniak K, Tysarowski A, Osipowicz K, Poznański J, et al. Novel and recurrent variants of ATP2C1 identified in patients with Hailey-Hailey disease. J Appl Genet 2020; 61: 187-193.

https://doi.org/10.1007/s13353-020-00538-8 DOI: https://doi.org/10.1007/s13353-020-00538-8

Ramos-Castañeda J, Park YN, Liu M, Hauser K, Rudolph H, Shull GE, et al. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress. J Biol Chem 2005; 280: 9467-9473.

https://doi.org/10.1074/jbc.M413243200 DOI: https://doi.org/10.1074/jbc.M413243200

Committee ADAPP. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes - 2022. Diabetes Care 2022; 45: S17-S38.

https://doi.org/10.2337/dc22-S002 DOI: https://doi.org/10.2337/dc22-S002

Leslie RD, Evans-Molina C, Freund-Brown J, Buzzetti R, Dabelea D, Gillespie KM, et al. Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care 2021; 44: 2449-2456.

https://doi.org/10.2337/dc21-0770 DOI: https://doi.org/10.2337/dc21-0770

DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 2018; 391: 2449-2462.

https://doi.org/10.1016/S0140-6736(18)31320-5 DOI: https://doi.org/10.1016/S0140-6736(18)31320-5

Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 2011; 11: 533-542.

https://doi.org/10.1007/s11892-011-0223-x DOI: https://doi.org/10.1007/s11892-011-0223-x

Samuelsson U, Westerberg L, Aakesson K, Birkebaek NH, Bjarnason R, Drivvoll AK, et al. Geographical variation in the incidence of type 1 diabetes in the Nordic countries: a study within NordicDiabKids. Pediatr Diabetes 2020; 21: 259-265.

https://doi.org/10.1111/pedi.12943 DOI: https://doi.org/10.1111/pedi.12943

Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 2015; 6: 87-123.

https://doi.org/10.3390/genes6010087 DOI: https://doi.org/10.3390/genes6010087

Bjornstad P, Chao LC, Cree-Green M, Dart AB, King M, Looker HC, et al. Youth-onset type 2 diabetes mellitus: an urgent challenge. Nat Rev Nephrol 2023; 19: 168-184.

https://doi.org/10.1038/s41581-022-00645-1 DOI: https://doi.org/10.1038/s41581-022-00645-1

Peltonen L, Perola M, Naukkarinen J, Palotie A. Lessons from studying monogenic disease for common disease. Hum Mol Genet 2006; 15 Spec No 1: R67-74.

https://doi.org/10.1093/hmg/ddl060 DOI: https://doi.org/10.1093/hmg/ddl060

Bone RT, Cono T, Evans-Molina C. Reduced ß cell SPCA1 leads to impaired calcium oscillations and decreased autophagy. Diabetes 2018; 67: 194-OR.

https://doi.org/10.2337/db18-194-OR DOI: https://doi.org/10.2337/db18-194-OR

Ludvigsson JF, Andersson E, Ekbom A, Feychting M, Kim JL, Reuterwall C, et al. External review and validation of the Swedish national inpatient register. BMC Public Health 2011; 11: 450.

https://doi.org/10.1186/1471-2458-11-450 DOI: https://doi.org/10.1186/1471-2458-11-450

World Health Organization (WHO). World Health Organization. International Statistical Classification of Diseases and Related Health Problems (ICD-10). Geneva: WHO; 1992.

Brooke HL, Talbäck M, Hörnblad J, Johansson LA, Ludvigsson JF, Druid H, et al. The Swedish cause of death register. Eur J Epidemiol 2017; 32: 765-773.

https://doi.org/10.1007/s10654-017-0316-1 DOI: https://doi.org/10.1007/s10654-017-0316-1

Ahanian T, Curman P, Leong IUS, Brismar K, Bachar-Wikstrom E, Cederlöf M, et al. Metabolic phenotype in Darier disease: a cross-sectional clinical study. Diabetol Metab Syndr 2020; 12: 12.

https://doi.org/10.1186/s13098-020-0520-0 DOI: https://doi.org/10.1186/s13098-020-0520-0

Yang L, Zhang Q, Zhang S, Liu Y, Wang T. Generalized Hailey-Hailey disease: novel splice-site mutations of ATP2C1 gene in Chinese population and a literature review. Mol Genet Genomic Med 2021; 9: e1580.

https://doi.org/10.1002/mgg3.1580 DOI: https://doi.org/10.1002/mgg3.1580

Bone RN, Oyebamiji O, Talware S, Selvaraj S, Krishnan P, Syed F, et al. A computational approach for defining a signature of β-cell golgi stress in diabetes. Diabetes 2020; 69: 2364-2376.

https://doi.org/10.2337/db20-0636 DOI: https://doi.org/10.2337/db20-0636

Aly TA, Ide A, Jahromi MM, Barker JM, Fernando MS, Babu SR, et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A 2006; 103: 14074-14079.

https://doi.org/10.1073/pnas.0606349103 DOI: https://doi.org/10.1073/pnas.0606349103

Tillil H, Köbberling J. Age-corrected empirical genetic risk estimates for first-degree relatives of IDDM patients. Diabetes 1987; 36: 93-99.

https://doi.org/10.2337/diab.36.1.93 DOI: https://doi.org/10.2337/diab.36.1.93

Jacobs E, Rathmann W, Tönnies T, Arendt D, Marchowez M, Veith L, et al. Age at diagnosis of type 2 diabetes in Germany: a nationwide analysis based on claims data from 69 million people. Diabet Med 2020; 37: 1723-1727.

https://doi.org/10.1111/dme.14100 DOI: https://doi.org/10.1111/dme.14100

Lee SE, Lee SH. Skin barrier and calcium. Ann Dermatol 2018; 30: 265-275.

https://doi.org/10.5021/ad.2018.30.3.265 DOI: https://doi.org/10.5021/ad.2018.30.3.265

Shull GE, Miller ML, Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 2011; 37: 150-158.

https://doi.org/10.1002/biof.141 DOI: https://doi.org/10.1002/biof.141

Zhang IX, Raghavan M, Satin LS. The endoplasmic reticulum and calcium homeostasis in pancreatic beta cells. Endocrinology 2020; 161: bqz028.

https://doi.org/10.1210/endocr/bqz028 DOI: https://doi.org/10.1210/endocr/bqz028

Clark AL, Urano F. Endoplasmic reticulum stress in beta cells and autoimmune diabetes. Curr Opin Immunol 2016; 43: 60-66.

https://doi.org/10.1016/j.coi.2016.09.006 DOI: https://doi.org/10.1016/j.coi.2016.09.006

Sun J, Cui J, He Q, Chen Z, Arvan P, Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol Aspects Med 2015; 42: 105-118.

https://doi.org/10.1016/j.mam.2015.01.001 DOI: https://doi.org/10.1016/j.mam.2015.01.001

Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007; 92: 2017-2029.

https://doi.org/10.1210/jc.2007-0298 DOI: https://doi.org/10.1210/jc.2007-0298

Rutter GA, Tsuboi T, Ravier MA. Ca2+ microdomains and the control of insulin secretion. Cell Calcium 2006; 40: 539-551.

https://doi.org/10.1016/j.ceca.2006.08.015 DOI: https://doi.org/10.1016/j.ceca.2006.08.015

Mezza T, Ferraro PM, Sun VA, Moffa S, Cefalo CMA, Quero G, et al. Increased β-cell workload modulates proinsulin-to-insulin ratio in humans. Diabetes 2018; 67: 2389-2396.

https://doi.org/10.2337/db18-0279 DOI: https://doi.org/10.2337/db18-0279

Pradhan AD, Manson JE, Meigs JB, Rifai N, Buring JE, Liu S, et al. Insulin, proinsulin, proinsulin:insulin ratio, and the risk of developing type 2 diabetes mellitus in women. Am J Med 2003; 114: 438-444.

https://doi.org/10.1016/S0002-9343(03)00061-5 DOI: https://doi.org/10.1016/S0002-9343(03)00061-5

Cederlöf M, Curman P, Ahanian T, Leong IUS, Brismar K, Bachar-Wikstrom E, et al. Darier disease is associated with type 1 diabetes: findings from a population-based cohort study. J Am Acad Dermatol 2019; 81: 1425-1426.

https://doi.org/10.1016/j.jaad.2019.05.087 DOI: https://doi.org/10.1016/j.jaad.2019.05.087

Published

2023-11-28

How to Cite

Curman, P., Jebril, W., Evans-Molina, C., Bachar-Wikstrom, E., Larsson, H., Cederlöf, M., & Wikström, J. D. (2023). Hailey-Hailey Disease is Associated with Diabetes: A Population-based Cohort Study, Clinical Cohort Study, and Pedigree Analysis. Acta Dermato-Venereologica, 103, adv10436. https://doi.org/10.2340/actadv.v103.10436