Expression Analysis of Retinal G Protein-coupled Receptor and its Correlation with Regulation of the Balance between Proliferation and Aberrant Differentiation in Cutaneous Squamous Cell Carcinoma

Authors

DOI:

https://doi.org/10.2340/actadv.v104.13213

Keywords:

RGR, cutaneous squamous cell carcinoma, proliferation, differentiation

Abstract

Retinal G protein-coupled receptor (RGR), a photosensitive protein, functions as a retinal photoisomerase under light conditions in humans. Cutaneous squamous cell carcinoma (cSCC) is linked to chronic ultraviolet exposure, which suggests that the photoreceptor RGR may be associated with tumorigenesis and progression of squamous cell carcinoma (SCC). However, the expression and function of RGR remain uncharacterized in SCC. This study analysed RGR expression in normal skin and in lesions of actinic keratosis, Bowen’s disease and invasive SCC of the skin with respect to SCC initiation and development. A total of 237 samples (normal skin (n = 28), actinic keratosis (n = 42), Bowen’s (n = 35) and invasive SCC (n = 132) lesions) were examined using immunohistochemistry. Invasive SCC samples had higher expression of RGR protein than the other samples. A high immunohistochemical score for RGR was associated with increased tumour size, tumour depth, Clark level, factor classification, and degree of differentiation and a more aggressive histological subtype. In addition, RGR expression was inversely correlated with involucrin expression and positively correlated with proliferating cell nuclear antigen (PCNA) and Ki67 expression. Furthermore, RGR regulates SCC cell differentiation through the PI3K-Akt signalling pathway, as determined using molecular biology approaches in vitro, suggesting that high expression of RGR is associated with aberrant proliferation and differentiation in SCC.

Downloads

Download data is not yet available.

References

Terakita A. The opsins. Genome Biol 2005; 6: 213.

https://doi.org/10.1186/gb-2005-6-3-213 DOI: https://doi.org/10.1186/gb-2005-6-3-213

Pandey S, Blanks JC, Spee C, Jiang M, Fong HK. Cytoplasmic retinal localization of an evolutionary homolog of the visual pigments. Exp Eye Res 1994; 58: 605-613.

https://doi.org/10.1006/exer.1994.1055 DOI: https://doi.org/10.1006/exer.1994.1055

Hao W, Fong HK. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem 1999; 274: 6085-6090.

https://doi.org/10.1074/jbc.274.10.6085 DOI: https://doi.org/10.1074/jbc.274.10.6085

Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, Xu T, et al. Light-driven regeneration of cone visual pigments through a mechanism involving rgr opsin in Müller glial cells. Neuron 2019; 102: 1172-1183.e5.

https://doi.org/10.1016/j.neuron.2019.04.004 DOI: https://doi.org/10.1016/j.neuron.2019.04.004

Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, Sander CL, et al. Photic generation of 11-retinal in bovine retinal pigment epithelium. J Biol Chem 2019; 294: 19137-19154.

https://doi.org/10.1074/jbc.RA119.011169 DOI: https://doi.org/10.1074/jbc.RA119.011169

Gu Y, Wang Y, Lan Y, Feng J, Zeng W, Zhang W, et al. Expression of retinal g protein-coupled receptor, a member of the opsin family, in human skin cells and its mediation of the cellular functions of keratinocytes. Front Cell Dev Biol 2022; 10: 787730.

https://doi.org/10.3389/fcell.2022.787730 DOI: https://doi.org/10.3389/fcell.2022.787730

Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol 2018; 78: 237-247.

https://doi.org/10.1016/j.jaad.2017.08.059 DOI: https://doi.org/10.1016/j.jaad.2017.08.059

Austin E, Geisler AN, Nguyen J, Kohli I, Hamzavi I, Lim HW, et al. Visible light. Part I: Properties and cutaneous effects of visible light. J Am Acad Dermatol 2021; 84: 1219-1231.

https://doi.org/10.1016/j.jaad.2021.02.048 DOI: https://doi.org/10.1016/j.jaad.2021.02.048

Corchado-Cobos R, García-Sancha N, González-Sarmiento R, Pérez-Losada J, Cañueto J. Cutaneous squamous cell carcinoma: from biology to therapy. Int J Mol Sci 2020; 21: 2956.

https://doi.org/10.3390/ijms21082956 DOI: https://doi.org/10.3390/ijms21082956

Lan Y, Wang Y, Lu H. Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol 2020; 182: 1228-1244.

https://doi.org/10.1111/bjd.18410 DOI: https://doi.org/10.1111/bjd.18410

Wang Y, Lan Y, Lu H. Opsin3 downregulation induces apoptosis of human epidermal melanocytes via mitochondrial pathway. Photochem Photobiol 2020; 96: 83-93.

https://doi.org/10.1111/php.13178 DOI: https://doi.org/10.1111/php.13178

Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med 2019; 51: 370-382.

https://doi.org/10.1002/lsm.23015 DOI: https://doi.org/10.1002/lsm.23015

Haltaufderhyde K, Ozdeslik RN, Wicks NL, Najera JA, Oancea E. Opsin expression in human epidermal skin. Photochem Photobiol 2015; 91: 117-123.

https://doi.org/10.1111/php.12354 DOI: https://doi.org/10.1111/php.12354

Toh PPC, Bigliardi-Qi M, Yap AMY, Sriram G, Stelmashenko O, Bigliardi P. Expression of peropsin in human skin is related to phototransduction of violet light in keratinocytes. Exp Dermatol 2016; 25: 1002-1005.

https://doi.org/10.1111/exd.13226 DOI: https://doi.org/10.1111/exd.13226

Zeng W, Zhang W, Feng J, He X, Lu H. Expression of OPN3 in acral lentiginous melanoma and its associated with clinicohistopathologic features and prognosis. Immun Inflamm Dis 2021; 9: 840-850.

https://doi.org/10.1002/iid3.438 DOI: https://doi.org/10.1002/iid3.438

Fitzgibbons PL, Dillon DA, Alsabeh R, Berman MA, Hayes DF, Hicks DG, et al. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the breast. Arch Pathol Lab Med 2014; 138: 595-601.

https://doi.org/10.5858/arpa.2013-0566-CP DOI: https://doi.org/10.5858/arpa.2013-0566-CP

Wang F, Flanagan J, Su N, Wang L-C, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 2012; 14: 22-29.

https://doi.org/10.1016/j.jmoldx.2011.08.002 DOI: https://doi.org/10.1016/j.jmoldx.2011.08.002

Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 2014; 70: 46-58.

https://doi.org/10.1016/j.ymeth.2014.08.016 DOI: https://doi.org/10.1016/j.ymeth.2014.08.016

Bonhin RG, Carvalho GMd, Guimarães AC, Chone CT, Crespo AN, Altemani AMdAM, et al. Histologic correlation of expression of Ki-67 in squamous cell carcinoma of the glottis according to the degree of cell differentiation. Braz J Otorhinolaryngol 2014; 80: 290-295.

https://doi.org/10.1016/j.bjorl.2014.05.016 DOI: https://doi.org/10.1016/j.bjorl.2014.05.016

Kim JYS, Kozlow JH, Mittal B, Moyer J, Olenecki T, Rodgers P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol 2018; 78: 560-578.

https://doi.org/10.1016/j.jaad.2017.10.007 DOI: https://doi.org/10.1016/j.jaad.2017.10.007

Karia PS, Jambusaria-Pahlajani A, Harrington DP, Murphy GF, Qureshi AA, Schmults CD. Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and Women's Hospital tumor staging for cutaneous squamous cell carcinoma. J Clin Oncol 2014; 32: 327-334.

https://doi.org/10.1200/JCO.2012.48.5326 DOI: https://doi.org/10.1200/JCO.2012.48.5326

Nii T, Marumoto T, Kohara H, Yamaguchi S, Kawano H, Sasaki E, et al. Improved hematopoietic differentiation of primate embryonic stem cells by inhibition of the PI3K-AKT pathway under defined conditions. Exp Hematol 2015; 43: 901-911.e4.

https://doi.org/10.1016/j.exphem.2015.06.001 DOI: https://doi.org/10.1016/j.exphem.2015.06.001

Tseng Y-H, Chang C-S, Liu T-Y, Kao S-Y, Chang K-W, Lin S-C. Areca nut extract treatment down-regulates involucrin in normal human oral keratinocyte through P13K/AKT activation. Oral Oncol 2007; 43: 670-679.

https://doi.org/10.1016/j.oraloncology.2006.08.003 DOI: https://doi.org/10.1016/j.oraloncology.2006.08.003

Zhang W, Zeng W, Jiang A, He Z, Shen X, Dong X, et al. Global, regional and national incidence, mortality and disability-adjusted life-years of skin cancers and trend analysis from 1990 to 2019: an analysis of the Global Burden of Disease Study 2019. Cancer Med 2021; 10: 4905-4922.

https://doi.org/10.1002/cam4.4046 DOI: https://doi.org/10.1002/cam4.4046

Green AC, Olsen CM. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol 2017; 177: 373-381.

https://doi.org/10.1111/bjd.15324 DOI: https://doi.org/10.1111/bjd.15324

Choi EH, Daruwalla A, Suh S, Leinonen H, Palczewski K. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. J Lipid Res 2021; 62: 100040.

https://doi.org/10.1194/jlr.TR120000850 DOI: https://doi.org/10.1194/jlr.TR120000850

de Assis LVM, Lacerda JT, Moraes MN, Domínguez-Amorocho OA, Kinker GS, Mendes D, et al. Melanopsin (Opn4) is an oncogene in cutaneous melanoma. Commun Biol 2022; 5: 461.

https://doi.org/10.1038/s42003-022-03425-6 DOI: https://doi.org/10.1038/s42003-022-03425-6

Stratigos A, Garbe C, Lebbe C, Malvehy J, del Marmol V, Pehamberger H, et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur J Cancer 2015; 51: 1989-2007.

https://doi.org/10.1016/j.ejca.2015.06.110 DOI: https://doi.org/10.1016/j.ejca.2015.06.110

Pandey S, Søland TM, Bjerkli IH, Sand LP, Petersen FC, Costea DE, et al. Combined loss of expression of involucrin and cytokeratin 13 is associated with poor prognosis in squamous cell carcinoma of mobile tongue. Head Neck 2021; 43: 3374-3385.

https://doi.org/10.1002/hed.26826 DOI: https://doi.org/10.1002/hed.26826

Roh V, Hiou-Feige A, Misetic V, Rivals J-P, Sponarova J, Teh M-T, et al. The transcription factor FOXM1 regulates the balance between proliferation and aberrant differentiation in head and neck squamous cell carcinoma. J Pathol 2020; 250: 107-119.

https://doi.org/10.1002/path.5342 DOI: https://doi.org/10.1002/path.5342

Bologna-Molina R, Mosqueda-Taylor A, Molina-Frechero N, Mori-Estevez A-D, Sánchez-Acuña G. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors. Med Oral Patol Oral Cir Bucal 2013; 18: e174-e179.

https://doi.org/10.4317/medoral.18573 DOI: https://doi.org/10.4317/medoral.18573

Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016; 118: 544-552.

https://doi.org/10.1016/j.acthis.2016.05.002 DOI: https://doi.org/10.1016/j.acthis.2016.05.002

Additional Files

Published

2024-01-26

How to Cite

Feng, J., Zhang, W., Zeng, W., Dong, X., Wang, Y., Gu, Y., … Lu, H. (2024). Expression Analysis of Retinal G Protein-coupled Receptor and its Correlation with Regulation of the Balance between Proliferation and Aberrant Differentiation in Cutaneous Squamous Cell Carcinoma. Acta Dermato-Venereologica, 104, adv13213. https://doi.org/10.2340/actadv.v104.13213

Issue

Section

Articles

Categories

Funding data