Deficiency of Cathelicidin-related Antimicrobial Peptide Promotes Skin Papillomatosis in Mus musculus Papillomavirus 1-infected Mice

Authors

  • Sonja Dorfer
  • Katharina Strasser
  • Siegfried Reipert
  • Michael B. Fischer
  • Saeed Shafti-Keramat
  • Michael Bonelli
  • Georg Schröckenfuchs
  • Wolfgang Bauer
  • Stefanie Kancz
  • Lena Müller
  • Alessandra Handisurya Department of Dermatology, Medical University Vienna, AT-1090 Vienna, Austria

DOI:

https://doi.org/10.2340/00015555-3733

Keywords:

antimicrobial peptide, cathelicidin, CRAMP, MmuPV1, skin papilloma, antiviral mechanisms

Abstract

Cathelicidins have been reported to inhibit human papillomavirus infection in vitro; however, nothing is known about their activity in vivo. In this study, experimental skin infection with Mus musculus papillomavirus 1 resulted in robust development of cutaneous papillomas in cyclosporine A-treated C57BL/6J mice deficient for the murine cathelicidin-related antimicrobial peptide (CRAMP), in contrast to wild-type controls. Analysis of the underlying mechanisms revealed moderate disruption of virion integrity and lack of interference with viral entry and intracellular trafficking by a synthetic CRAMP peptide. Differences in the immune response to Mus musculus papillomavirus 1 infection were observed between CRAMP-deficient and wild-type mice. These included a stronger reduction in CD4+ and CD8+ T-cell numbers in infected skin, and lack of Mus musculus papillomavirus 1-specific neutralizing antibodies in response to cyclosporine A in the absence of endogenous CRAMP. CRAMP has modest direct anti-papillomaviral effects in vitro, but exerts protective functions against Mus musculus papillomavirus 1 skin infection and disease development in vivo, primarily by modulation of cellular and humoral immunity.

Downloads

Download data is not yet available.

References

Afshar M, Gallo RL. Innate immune defense system of the skin. Vet Dermatol 2013; 24: 32-8.e8-9.

DOI: https://doi.org/10.1111/j.1365-3164.2012.01082.x

Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 1997; 272: 13088-13093.

DOI: https://doi.org/10.1074/jbc.272.20.13088

Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A streptococcus. J Invest Dermatol 2001; 117: 91-97.

DOI: https://doi.org/10.1046/j.1523-1747.2001.01340.x

Conner K, Nern K, Rudisill J, O'Grady T, Gallo RL. The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 2002; 47: 347-350.

DOI: https://doi.org/10.1067/mjd.2002.122190

Crack LR, Jones L, Malavige GN, Patel V, Ogg GS. Human antimicrobial peptides LL-37 and human ?-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 2012; 37: 534-543.

DOI: https://doi.org/10.1111/j.1365-2230.2012.04305.x

Currie SM, Gwyer Findlay E, McFarlane AJ, Fitch PM, Böttcher B, Colegrave N, et al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol 2016; 196: 2699-2710.

DOI: https://doi.org/10.4049/jimmunol.1502478

Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C, et al. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 2006; 117: 836-841.

DOI: https://doi.org/10.1016/j.jaci.2005.12.1345

Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DYM. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 2004; 172: 1763-1967.

DOI: https://doi.org/10.4049/jimmunol.172.3.1763

Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol 2013; 94: 40-49.

DOI: https://doi.org/10.1099/vir.0.045013-0

Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One 2011; 6: e25333.

DOI: https://doi.org/10.1371/journal.pone.0025333

Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414: 454-457.

DOI: https://doi.org/10.1038/35106587

Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, et al. Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 2006; 103: 1516-1521.

DOI: https://doi.org/10.1073/pnas.0508033103

Handisurya A, Day PM, Thompson CD, Bonelli M, Lowy DR, Schiller JT. Strain-specific properties and T cells regulate the susceptibility to papilloma induction by Mus musculus papillomavirus 1. PLoS Pathog 2014; 10: e1004314.

DOI: https://doi.org/10.1371/journal.ppat.1004314

Uberoi A, Lambert PF. Rodent papillomaviruses. Viruses 2017; 9: 362.

DOI: https://doi.org/10.3390/v9120362

Handisurya A, Day PM, Thompson CD, Buck CB, Pang Y-YS, Lowy DR, et al. Characterization of Mus musculus papillomavirus 1 infection in situ reveals an unusual pattern of late gene expression and capsid protein localization. J Virol 2013; 87: 13214-13225.

DOI: https://doi.org/10.1128/JVI.02162-13

Handisurya A, Day PM, Thompson CD, Buck CB, Kwak K, Roden RBS, et al. Murine skin and vaginal mucosa are similarly susceptible to infection by pseudovirions of different papillomavirus classifications and species. Virology 2012; 433: 385-394.

DOI: https://doi.org/10.1016/j.virol.2012.08.035

Day PM, Lowy DR, Schiller JT. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 2003; 307: 1-11.

DOI: https://doi.org/10.1016/S0042-6822(02)00143-5

Zamora E, Handisurya A, Shafti-Keramat S, Borchelt D, Rudow G, Conant K, et al. Papillomavirus-like particles are an effective platform for amyloid-beta immunization in rabbits and transgenic mice. J Immunol 2006; 177: 2662-2670.

DOI: https://doi.org/10.4049/jimmunol.177.4.2662

Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 2003; 77: 13125-13135.

DOI: https://doi.org/10.1128/JVI.77.24.13125-13135.2003

Kirnbauer R, Hubbert NL, Wheeler CM, Becker TM, Lowy DR, Schiller JT. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J Natl Cancer Inst 1994; 86: 494-499.

DOI: https://doi.org/10.1093/jnci/86.7.494

Buck CB, Pastrana DV, Lowy DR, Schiller JT. Efficient intracellular assembly of papillomaviral vectors. J Virol 2004; 78: 751-757.

DOI: https://doi.org/10.1128/JVI.78.2.751-757.2004

Pastrana DV., Buck CB, Pang Y-YS, Thompson CD, Castle PE, FitzGerald PC, et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 2004; 321: 205-216.

DOI: https://doi.org/10.1016/j.virol.2003.12.027

Day PM, Gambhira R, Roden RBS, Lowy DR, Schiller JT. Mechanisms of human papillomavirus type 16 neutralization by L2 cross-neutralizing and L1 type-specific antibodies. J Virol 2008; 82: 4638-4646.

DOI: https://doi.org/10.1128/JVI.00143-08

Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, et al. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One 2013; 8: e73659.

DOI: https://doi.org/10.1371/journal.pone.0073659

Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, et al. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006; 24: 341-348.

DOI: https://doi.org/10.1016/j.immuni.2006.02.006

Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375: 411-415.

DOI: https://doi.org/10.1038/375411a0

Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4+ T cells in immunity to viruses. Nature Rev Immunol 2012; 12: 136-148.

DOI: https://doi.org/10.1038/nri3152

Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics 2013; 23: 563-585.

DOI: https://doi.org/10.1097/FPC.0b013e328364db84

Published

2021-01-05

How to Cite

Dorfer, S., Strasser, K., Reipert, S., Fischer, M. B., Shafti-Keramat, S., Bonelli, M., Schröckenfuchs, G., Bauer, W., Kancz, S., Müller, L., & Handisurya, A. (2021). Deficiency of Cathelicidin-related Antimicrobial Peptide Promotes Skin Papillomatosis in Mus musculus Papillomavirus 1-infected Mice. Acta Dermato-Venereologica, 101(1), adv00367. https://doi.org/10.2340/00015555-3733