Bullous Pemphigoid Associated with Anti-programmed Cell Death Protein 1 and Anti-programmed Cell Death Ligand 1 Therapy: A Review of the Literature
DOI:
https://doi.org/10.2340/00015555-3740Keywords:
autoimmune bullous disorder, bullous pemphigoid, PD-1 inhibitor, PD-L1 inhibitor, checkpoint inhibitor, immune-related adverse eventAbstract
Bullous pemphigoid constitutes a rare dermatological immune-related adverse event of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors. Herein, we review all published cases of anti-PD-1/PD-L1 related bullous pemphigoid and discuss current knowledge on this condition. Clinical and diagnostic findings were found to resemble those of classic bullous pemphigoid. A delayed onset of bullous pemphigoid after commencement of immunotherapy as well as a frequent precendence of a refractory pruritic eruption prior to blister development was oberved, both posing diagnostic challenges. In addition to topical and systemic treatment, most patients required either discontinuation or permanent interruption of immunotherapy. Assessment of tumour outcome did not reveal improved survival in patients developing bullous pemphigoid during immunotherapy, as suggested for other types of skin toxicity, including vitiligo. Better understanding of the pathogenetic mechanism and prognostic implications of this increasingly-reported adverse event is essential in order to establish optimal diagnostic and therapeutic management of these patients.
Downloads
References
Lo Schiavo A, Ruocco E, Brancaccio G, Caccavale S, Ruocco V, Wolf R. Bullous pemphigoid: Etiology, pathogenesis, and inducing factors: facts and controversies. Clin Dermatol 2013; 31: 391-399.
DOI: https://doi.org/10.1016/j.clindermatol.2013.01.006
Nishie W. Update on the pathogenesis of bullous pemphigoid: an autoantibody-mediated blistering disease targeting collagen XVII. J Dermatol Sci 2014; 73: 179-186.
DOI: https://doi.org/10.1016/j.jdermsci.2013.12.001
Stavropoulos PG, Soura E, Antoniou C. Drug-induced pemphigoid: a review of the literature. J Eur Acad Dermatol Venereol 2014; 28: 1133-1140.
DOI: https://doi.org/10.1111/jdv.12366
Patsatsi A, Vyzantiadis TA, Chrysomallis F, Devliotou-Panagiotidou D, Sotiriadis D. Medication history of a series of patients with bullous pemphigoid from northern Greece - observations and discussion. Int J Dermatol 2009; 48: 132-135.
DOI: https://doi.org/10.1111/j.1365-4632.2009.03839.x
Vassileva S. Drug-induced pemphigoid: bullous and cicatricial. Clin Dermatol 1998; 16: 379-387.
DOI: https://doi.org/10.1016/S0738-081X(98)00008-X
Verheyden M, Bilgic A, Murrell D. A systematic review of drug-induced pemphigoid. Acta Derm Venereol 2020; 100: adv00224.
DOI: https://doi.org/10.2340/00015555-3457
Sibaud V. Dermatologic reactions to immune checkpoint inhibitors. Am J Clin Dermatol 2018; 19: 345-361.
DOI: https://doi.org/10.1007/s40257-017-0336-3
Belum VR, Benhuri B, Postow MA, Hellmann MD, Lesokhin AM, Segal NH, et al. Characterization and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016; 60: 12-25.
DOI: https://doi.org/10.1016/j.ejca.2016.02.010
Hwang SJ, Carlos G, Wakade D, Byth K, Kong BY, Chou S, et al. Cutaneous adverse events (AEs) of anti-programmed cell death (PD)-1 therapy in patients with metastatic melanoma: a single-institution cohort. J Am Acad Dermatol 2016; 74: 455-461.
DOI: https://doi.org/10.1016/j.jaad.2015.10.029
Lopez AT, Khanna T, Antonov N, Audrey-Bayan C, Geskin L. A review of bullous pemphigoid associated with PD-1 and PD-L1 inhibitors. Int J Dermatol 2018; 57: 664-669.
DOI: https://doi.org/10.1111/ijd.13984
Zhao CY, Hwang SJE, Consuegra G, Chou S, Fernandez-Peñas P. Anti-programmed cell death-1 therapy-associated bullous disorders: a systematic review of the literature. Melanoma Res 2018; 28: 491-501.
DOI: https://doi.org/10.1097/CMR.0000000000000500
Coleman E, Ko C, Dai F, Tomayko MM, Kluger H, Leventhal JS. Inflammatory eruptions associated with immune checkpoint inhibitor therapy. J Am Acad Dermatol 2019; 80: 990-997.
DOI: https://doi.org/10.1016/j.jaad.2018.10.062
Nelson CA, Singer S, Chen T, Puleo AE, Lian CG, Wei EX, et al. Bullous pemphigoid after anti-PD-1 therapy: a retrospective case-control study evaluating impact on tumor response and survival outcomes. J Am Acad Dermatol 2020; Jan 10 [Epub ahead of print].
DOI: https://doi.org/10.1016/j.jaad.2019.12.068
Phillips GS, Wu J, Hellmann MD, Postow MA, Rizvi NA, Freites-Martinez A. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol 2019; 37: 2746-2758.
DOI: https://doi.org/10.1200/JCO.18.02141
Curry JL, Tetzlaff MT, Nagarajan P, Drucker C, Diab A, Hymes SR, et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol 2017; 44: 158-176.
DOI: https://doi.org/10.1111/cup.12858
Kridin K, Ludwig RJ. The Growing incidence of bullous pemphigoid: overview and potential explanations. Front Med (Lausanne) 2018; 5: 220.
DOI: https://doi.org/10.3389/fmed.2018.00220
Yuan TA, Lu Y, Edwards K, Jakowatz J, Meyskens FL, Liu-Smith F. Race-, age-, and anatomic site-specific gender differences in cutaneous melanoma suggest differential mechanisms of early-and late-onset melanoma. Int J Environ Res Public Health 2019; 16: 908.
DOI: https://doi.org/10.3390/ijerph16060908
Ksienski D, Wai ES, Croteau NS, Freeman AT, Chan A, Fiorino L, et al. Association of age with differences in immune related adverse events and survival of patients with advanced nonsmall cell lung cancer receiving pembrolizumab or nivolumab. J Geriatr Oncol 2020; 11: 807-813.
DOI: https://doi.org/10.1016/j.jgo.2020.01.006
Eun Y, Kim IY, Sun JM, Lee J, Cha HS, Koh EM, et al. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci Rep 2019; 9: 1-8.
DOI: https://doi.org/10.1038/s41598-019-50574-6
Wang LL, Patel G, Chiesa-Fuxench ZC, McGettigan S, Schuchter L, Mitchell TC, et al. Timing of onset of adverse cutaneous reactions associated with programmed cell death protein 1 inhibitor therapy. JAMA Dermatol 2018; 154: 1057-1061.
DOI: https://doi.org/10.1001/jamadermatol.2018.1912
Cornejo CM, Haun P, English J 3rd, Rosenbach M. Immune checkpoint inhibitors and the development of granulomatous reactions. J Am Acad Dermatol 2019; 81: 1165-1175.
DOI: https://doi.org/10.1016/j.jaad.2018.07.051
Cozzani E, Gasparini G, Burlando M, Drago F, Parodi A. Atypical presentations of bullous pemphigoid: clinical and immunopathological aspects. Autoimmun Rev 2015; 14: 438-445.
DOI: https://doi.org/10.1016/j.autrev.2015.01.006
Fairley JA, Heintz PW, Neuburg M, Diaz LA, Giudice GJ. Expression pattern of the bullous pemphigoid-180 antigen in normal and neoplastic epithelia. Br J Dermatol 1995; 133: 385-392.
DOI: https://doi.org/10.1111/j.1365-2133.1995.tb02665.x
Ong E, Goldacre R, Hoang U, Sinclair R, Goldacre M. Associations between bullous pemphigoid and primary malignant cancers: an English national record linkage study, 1999 - 2011. Arch Dermatol Res 2014; 306: 75-80.
DOI: https://doi.org/10.1007/s00403-013-1399-5
Ali OH, Bomze D, Ring SS, Berner F, Fässler M, Diem S, et al. BP180-specific IgG is associated with skin adverse events, therapy response, and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors. J Am Acad Dermatol 2020; 82: 854-861.
DOI: https://doi.org/10.1016/j.jaad.2019.08.045
Wada N, Uchi H, Furue M. Bullous pemphigoid induced by pembrolizumab in a patient with advanced melanoma expressing collagen XVII. J Dermatol 2017; 44: e240-e241.
DOI: https://doi.org/10.1111/1346-8138.13940
García-Díez I, España A, Iranzo P. Epitope-spreading phenomena in dipeptidyl peptidase-4 inhibitor-associated bullous pemphigoid. Br J Dermatol 2019; 180: 1267-1268.
DOI: https://doi.org/10.1111/bjd.17690
Morris LM, Lewis HA, Cornelius LA, Chen DY, Rosman IS. Neutrophil-predominant bullous pemphigoid induced by checkpoint inhibitors: a case series. J Cutan Pathol 2020; 47: 742-746.
DOI: https://doi.org/10.1111/cup.13687
Yang H, Yao Z, Zhou X, Zhang W, Zhang X, Zhang F. Immune-related adverse events of checkpoint inhibitors: insights into immunological dysregulation. Clin Immunol 2020; 213: 108377.
DOI: https://doi.org/10.1016/j.clim.2020.108377
Xia Y, Jeffrey Medeiros LJ, Young KH. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta 2016; 1865: 58-71.
DOI: https://doi.org/10.1016/j.bbcan.2015.09.002
Li Q, Liu Z, Dang E, Jin L, He Z, Yang L, et al. Follicular helper T cells (Tfh) and IL-21 involvement in the pathogenesis of bullous pemphigoid. PLoS One 2013; 8: e68145.
DOI: https://doi.org/10.1371/journal.pone.0068145
Williams HC, Wojnarowska F, Kirtschig G, Mason J, Godec TR, Schmidt E, et al. Doxycycline versus prednisolone as an initial treatment strategy for bullous pemphigoid: a pragmatic, non-inferiority, randomised controlled trial. Lancet 2017; 389: 1630-1638.
DOI: https://doi.org/10.1016/S0140-6736(17)30560-3
Kremer N, Snast I, Cohen ES, Hodak E, Mimouni D, Lapidoth M, et al. Rituximab and omalizumab for the treatment of bullous pemphigoid: a systematic review of the literature. Am J Clin Dermatol 2019; 20: 209-216.
DOI: https://doi.org/10.1007/s40257-018-0401-6
Polansky M, Eisenstadt R, DeGrazia T, Zhao X, Liu Y, Feldman R. Rituximab therapy in patients with bullous pemphigoid: a retrospective study of 20 patients. J Am Acad Dermatol 2019; 81: 179-186.
DOI: https://doi.org/10.1016/j.jaad.2019.03.049
Hua C, Boussemart L, Mateus C, Routier E, Boutros C, Cazenave H, et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol 2016; 152: 45-51.
DOI: https://doi.org/10.1001/jamadermatol.2015.2707
Min Lee CK, Li S, Tran DC, Zhu GA, Kim J, Kwong BY, et al. Characterization of dermatitis after PD-1/PD-L1 inhibitor therapy and association with multiple oncologic outcomes: a retrospective case-control study. J Am Acad Dermatol 2019; 79: 1047-1052.
DOI: https://doi.org/10.1016/j.jaad.2018.05.035
Wilson BE, Routy B, Nagrial A, Chin VT. The effect of antibiotics on clinical outcomes in immune ? checkpoint blockade?: a systematic review and meta-analysis of observational studies. Cancer Immunol Immunother 2020; 69: 343-354.
DOI: https://doi.org/10.1007/s00262-019-02453-2
Kim H, Lee JE, Hong SH, Lee MA, Kang JH, Kim IH. The effect of antibiotics on the clinical outcomes of patients with solid cancers undergoing immune checkpoint inhibitor treatment: a retrospective study. BMC Cancer 2019; 19: 1100.
DOI: https://doi.org/10.1186/s12885-019-6267-z
Pinato DJ, Gramenitskaya D, Altmann DM, Boyton RJ, Mullish BH, Marchesi JR, et al. Antibiotic therapy and outcome from immune-checkpoint inhibitors. J Immunother Cancer 2019; 7: 287.
DOI: https://doi.org/10.1186/s40425-019-0775-x
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359: 91-97.
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2021 Aikaterini Tsiogka, Johann W. Bauer, Aikaterini Patsatsi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.