Hyperspectral Imaging for Non-invasive Diagnostics of Melanocytic Lesions
DOI:
https://doi.org/10.2340/actadv.v102.2045Keywords:
hyperspectral imaging, non-invasive diagnostic, machine learning, malignant melanomaAbstract
Malignant melanoma poses a clinical diagnostic problem, since a large number of benign lesions are excised to find a single melanoma. This study assessed the accuracy of a novel non-invasive diagnostic technology, hyperspectral imaging, for melanoma detection. Lesions were imaged prior to excision and histopathological analysis. A deep neural network algorithm was trained twice to distinguish between histopathologically verified malignant and benign melanocytic lesions and to classify the separate subgroups. Furthermore, 2 different approaches were used: a majority vote classification and a pixel-wise classification. The study included 325 lesions from 285 patients. Of these, 74 were invasive melanoma, 88 melanoma in situ, 115 dysplastic naevi, and 48 non-dysplastic naevi. The study included a training set of 358,800 pixels and a validation set of 7,313 pixels, which was then tested with a training set of 24,375 pixels. The majority vote classification achieved high overall sensitivity of 95% and a specificity of 92% (95% confidence interval (95% CI) 0.024–0.029) in differentiating malignant from benign lesions. In the pixel-wise classification, the overall sensitivity and specificity were both 82% (95% CI 0.005–0.005). When divided into 4 subgroups, the diagnostic accuracy was lower. Hyperspectral imaging provides high sensitivity and specificity in distinguishing between naevi and melanoma. This novel method still needs further validation.
Downloads
References
Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 2017; 67: 472-492.
https://doi.org/10.3322/caac.21409 DOI: https://doi.org/10.3322/caac.21409
Gordon LG, Rowell D. Health system costs of skin cancer and cost-effectiveness of skin cancer prevention and screening: a systematic review. Eur J Cancer Prev 2015; 24: 141-149.
https://doi.org/10.1097/CEJ.0000000000000056 DOI: https://doi.org/10.1097/CEJ.0000000000000056
Eriksson T, Tinghög G. Societal cost of skin cancer in Sweden in 2011. Acta Derm Venereol 2015; 95: 347-348.
https://doi.org/10.2340/00015555-1938 DOI: https://doi.org/10.2340/00015555-1938
Alexandrescu DT. Melanoma costs: a dynamic model comparing estimated overall costs of various clinical stages. Dermatol Online J 2009; 15: 1.
https://doi.org/10.5070/D353F8Q915 DOI: https://doi.org/10.5070/D353F8Q915
Baade PD, Youl PH, Janda M, Whiteman DC, Del Mar CB, Aitken JF. Factors associated with the number of lesions excised for each skin cancer: a study of primary care physicians in Queensland, Australia. Arch Dermatol 2008; 144: 1468-1476.
https://doi.org/10.1001/archderm.144.11.1468 DOI: https://doi.org/10.1001/archderm.144.11.1468
Petty AJ, Ackerson B, Garza R, Peterson M, Liu B, Green C, et al. Meta-analysis of number needed to treat for diagnosis of melanoma by clinical setting. J Am Acad Dermatol 2020; 82: 1158-1165.
https://doi.org/10.1016/j.jaad.2019.12.063 DOI: https://doi.org/10.1016/j.jaad.2019.12.063
Terushkin V, Ng E, Stein JA, Katz S, Cohen DE, Meehan S, et al. A prospective study evaluating the utility of a 2-mm biopsy margin for complete removal of histologically atypical (dysplastic) nevi. J Am Acad Dermatol 2017; 77: 1096-1099.
https://doi.org/10.1016/j.jaad.2017.07.016 DOI: https://doi.org/10.1016/j.jaad.2017.07.016
Neittaanmäki N, Salmivuori M, Pölönen I, Jeskanen L, Ranki A, Saksela O, et al. Hyperspectral imaging in detecting dermal invasion in lentigo maligna melanoma. Br J Dermatol 2017; 177: 1742-1744.
https://doi.org/10.1111/bjd.15267 DOI: https://doi.org/10.1111/bjd.15267
Räsänen J, Salmivuori M, Pölönen I, Grönroos M, Neittaanmäki N. Hyperspectral imaging reveals spectral differences and can distinguish malignant melanoma from pigmented basal cell carcinomas: a pilot study. Acta Derm Venereol 2021; 101: adv00405.
https://doi.org/10.2340/00015555-3755 DOI: https://doi.org/10.2340/00015555-3755
Neittaanmäki-Perttu N, Grönroos M, Jeskanen L, Pölönen I, Ranki A, Saksela O, Snellman E. Delineating margins of lentigo maligna using a hyperspectral imaging system. Acta Derm Venereol 2015; 95: 549-552.
https://doi.org/10.2340/00015555-2010 DOI: https://doi.org/10.2340/00015555-2010
Salmivuori M, Neittaanmäki N, Pölönen I, Jeskanen L, Snellman E, Grönroos M. Hyperspectral imaging system in the delineation of ill-defined basal cell carcinomas: a pilot study. J Eur Acad Dermatol Venereol 2019; 33: 71-78.
https://doi.org/10.1111/jdv.15102 DOI: https://doi.org/10.1111/jdv.15102
Saari H, Pölönen I, Salo H, Honkavaara E, Hakala T, Holmlund C, et al. Miniaturized hyperspectral imager calibration and UAV flight campaigns. International Society for Optics and Photonics. Sensors, Systems, and Next-Generation Satellites XVII 2013; 8889: 88891.
https://doi.org/10.1117/12.2028972 DOI: https://doi.org/10.1117/12.2028972
Barun VV, Ivanov AP, VolotovskayaAV. Absorption spectra and light penetration depth of normal and pathologically altered human skin. J Appl Spectrosc 2007; 74: 430-439.
https://doi.org/10.1007/s10812-007-0071-2 DOI: https://doi.org/10.1007/s10812-007-0071-2
Morales G, Sheppard JW, Scherrer B, Shaw JA. Reduced-cost hyperspectral convolutional neural networks. J Appl Remote Sens 2020; 14: 036519.
https://doi.org/10.1117/1.JRS.14.036519 DOI: https://doi.org/10.1117/1.JRS.14.036519
Audebert N, Le Saux B, Lefèvre S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geoscience and Remote Sensing Magazine 2009; 7: 159-173.
https://doi.org/10.1109/MGRS.2019.2912563 DOI: https://doi.org/10.1109/MGRS.2019.2912563
Lunga D, Prasad S, Crawford MM, Ersoy O. Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning. IEEE Signal Processing Magazine 2013; 31: 55-66.
https://doi.org/10.1109/MSP.2013.2279894 DOI: https://doi.org/10.1109/MSP.2013.2279894
Ghamisi P, Plaza J, Chen Y, Li J, Plaza, AJ. Advanced spectral classifiers for hyperspectral images: a review. IEEE Geoscience and Remote Sensing Magazine 2017; 5: 8-32.
https://doi.org/10.1109/MGRS.2016.2616418 DOI: https://doi.org/10.1109/MGRS.2016.2616418
Legendre P. Spatial autocorrelation: trouble or new paradigm? Ecology 1993; 74: 1659-1673.
https://doi.org/10.2307/1939924 DOI: https://doi.org/10.2307/1939924
Menardi, G, Torelli N. Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery 2014; 28: 92-122.
https://doi.org/10.1007/s10618-012-0295-5 DOI: https://doi.org/10.1007/s10618-012-0295-5
Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT Press; 2016.
Heal CF, Raasch BA, Buettner PG, Weedon D. Accuracy of clinical diagnosis of skin lesions. Br J Dermatol 2008; 159: 661-668.
https://doi.org/10.1111/j.1365-2133.2008.08715.x DOI: https://doi.org/10.1111/j.1365-2133.2008.08715.x
Langley RG, Walsh N, Sutherland AE, Propperova I, Delaney L, Morris SF, et al. The diagnostic accuracy of in vivo confocal scanning laser microscopy compared to dermoscopy of benign and malignant melanocytic lesions: a prospective study. Dermatology 2007; 215: 365-372.
https://doi.org/10.1159/000109087 DOI: https://doi.org/10.1159/000109087
Ferris LK, Harris RJ. New diagnostic aids for melanoma. Dermatol Clin 2012; 30: 535-545.
https://doi.org/10.1016/j.det.2012.04.012 DOI: https://doi.org/10.1016/j.det.2012.04.012
Tkaczyk E. Innovations and developments in dermatologic non-invasive optical imaging and potential clinical applications. Acta Derm Venereol 2017; Suppl 218: 5-13.
https://doi.org/10.2340/00015555-2717 DOI: https://doi.org/10.2340/00015555-2717
Gambichler T, Plura I, Schmid-Wendtner M, Valavanis K, Kulichova D, Stücker M, et al. High-definition optical coherence tomography of melanocytic skin lesions. J Biophotonics 2015; 8: 681-686.
https://doi.org/10.1002/jbio.201400085 DOI: https://doi.org/10.1002/jbio.201400085
Dimitrow E, Ziemer M, Koehler MJ, Norgauer J, König K, Elsner P, et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 2009; 129: 1752-1758.
https://doi.org/10.1038/jid.2008.439 DOI: https://doi.org/10.1038/jid.2008.439
Mohr P, Birgersson U, Berking C, Henderson C, Trefzer U, Kemeny L, et al. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res Technol 2013; 19: 75-83.
https://doi.org/10.1111/srt.12008 DOI: https://doi.org/10.1111/srt.12008
Malvehy J, Hauschild A, Curiel-Lewandrowski C, Mohr P, Hofmann-Wellenhof R, Motley R, et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol 2014; 171: 1099-1107.
https://doi.org/10.1111/bjd.13121 DOI: https://doi.org/10.1111/bjd.13121
Friedman RJ, Gutkowicz-Krusin D, Farber MJ, Warycha M, Schneider-Kels L, Papastathis N, et al. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch Dermatol 2008; 144: 476-482.
https://doi.org/10.1001/archderm.144.4.476 DOI: https://doi.org/10.1001/archderm.144.4.476
Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M, et al. The performance of MelaFind: a prospective multicenter study. Arch Dermatol 2011; 147: 188-194.
https://doi.org/10.1001/archdermatol.2010.302 DOI: https://doi.org/10.1001/archdermatol.2010.302
Glud M, Gniadecki R, Drzewiecki KT. Spectrophotometric intracutaneous analysis versus dermoscopy for the diagnosis of pigmented skin lesions: prospective, double-blind study in a secondary reference centre. Melanoma Res 2009; 19: 176-179.
https://doi.org/10.1097/CMR.0b013e328322fe5f DOI: https://doi.org/10.1097/CMR.0b013e328322fe5f
Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol 2002; 146: 448-457.
https://doi.org/10.1046/j.1365-2133.2002.04569.x DOI: https://doi.org/10.1046/j.1365-2133.2002.04569.x
Tomatis S, Carrara M, Bono A, Bartoli C, Lualdi M, Tragni G, et al. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Phys Med Biol 2005; 50: 1675-1687.
https://doi.org/10.1088/0031-9155/50/8/004 DOI: https://doi.org/10.1088/0031-9155/50/8/004
Marghoob AA, Swindle LD, Moricz CZ, Sanchez Negron FA, Slue B, Halpern AC, et al. Instruments and new technologies for the in vivo diagnosis of melanoma. J Am Acad Dermatol 2003; 49: 777-797.
https://doi.org/10.1016/S0190-9622(03)02470-8 DOI: https://doi.org/10.1016/S0190-9622(03)02470-8
Fink C, Haenssle HA. Non-invasive tools for the diagnosis of cutaneous melanoma. Skin Res Technol 2017; 23: 261-271.
https://doi.org/10.1111/srt.12350 DOI: https://doi.org/10.1111/srt.12350
Meng X, Chen J, Zhang Z, Li K, Li J, Yu Z, et al. Non-invasive optical methods for melanoma diagnosis. Photodiagnosis Photodyn Ther 2021; 34: 102266.
https://doi.org/10.1016/j.pdpdt.2021.102266 DOI: https://doi.org/10.1016/j.pdpdt.2021.102266
Li Q, He X, Wang Y, Liu H, Xu D, Guo F. Review of spectral imaging technology in biomedical engineering: achievements and challenges. J Biomed Opt 2013; 18: 100901.
https://doi.org/10.1117/1.JBO.18.10.100901 DOI: https://doi.org/10.1117/1.JBO.18.10.100901
March J, Hand M, Grossman D. Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches. J Am Acad Dermatol 2015; 72: 929-941.
https://doi.org/10.1016/j.jaad.2015.02.1138 DOI: https://doi.org/10.1016/j.jaad.2015.02.1138
Christensen GB, Nagaoka T, Kiyohara Y, Johansson I, Ingvar C, Nakamura A, et al. Clinical performance of a novel hyperspectral imaging device for cutaneous melanoma and pigmented skin lesions in Caucasian skin. Skin Res Technol 2021; 27: 803-809.
https://doi.org/10.1111/srt.13023 DOI: https://doi.org/10.1111/srt.13023
Wang Q, Sun L, Wang Y, Zhou M, Hu M, Chen J, et al. Identification of melanoma from hyperspectral pathology image using 3D convolutional networks. IEEE Trans Med Imaging 2021; 40: 218-227.
https://doi.org/10.1109/TMI.2020.3024923 DOI: https://doi.org/10.1109/TMI.2020.3024923
Wang J, Li Q, Zhou M, Sun L, Hu M, Lyu Y, et al. Identification and measurement on cutaneous melanoma superficial spreading depth using microscopic hyperspectral imaging technology. J Infrared Millim Waves 2020; 39: 749-759.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 John Paoli, I. Pölönen, Mari Salmivuori, Janne Räsänen, Oscar Zaar, Sam Polesie, Sari Koskenmies, Sari Pitkänen, Meri Övermark, Kirsi Isoherranen, Susanna Juteau, Annamari Ranki, Mari Grönroos, Noora Neittaanmäki
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.