Superantigen Encoding Genes in Staphylococcus aureus Isolated from Lesional Skin, Non-Lesional Skin, and Nares of Patients with Atopic Dermatitis

Authors

  • Natalia Ratusznik School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
  • Sofie Marie Edslev Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
  • Marc Stegger School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark; Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
  • Bo Söderquist School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden https://orcid.org/0000-0001-5939-2932

DOI:

https://doi.org/10.2340/actadv.v104.34882

Keywords:

Atopic Dermatitis, Staphylococcus aureus;, Superantigens, Enterotoxins, TSST-1

Abstract

Patients with atopic dermatitis (AD) are more likely than healthy individuals to harbour Staphylococcus aureus on their skin. Superantigens (SAgs) produced by specific S. aureus strains may contribute to AD-associated skin inflammation. The present study compared the prevalence and types of SAg-encoding genes between S. aureus isolated from patients with AD and from  controls, and within the AD group between isolates from different sampling sites (lesional skin, non-lesional skin, and nares). This retrospective case-control study extracted data from 2 previous studies that examined S. aureus using whole-genome sequencing. The 138 S. aureus isolates obtained from 71 AD patients contained 349 SAg-encoding genes; 22 (6.3%) were found in isolates from nares (0.4 ± 0.6 genes per isolate), 99 (28.4%) in isolates from non-lesional skin (3.7 ± 3.9), and 228 (65.3%) in isolates from lesional skin (4.2 ± 4.5). S. aureus (n = 101) from the control group contained 594 SAg-encoding genes (5.9 ± 4.2). Of the S. aureus isolated from lesional AD skin, 69% carried at least 1 gene encoding SAg compared with 33% of AD nasal isolates. SAg could be a factor in the pathogenesis of a subset of AD patients.

Downloads

Download data is not yet available.

References

Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol 2013; 132: 1132-1138.

https://doi.org/10.1016/j.jaci.2013.08.031 DOI: https://doi.org/10.1016/j.jaci.2013.08.031

Henriksen L, Simonsen J, Haerskjold A, Linder M, Kieler H, Thomsen SF, et al. Incidence rates of atopic dermatitis, asthma, and allergic rhinoconjunctivitis in Danish and Swedish children. J Allergy Clin Immunol 2015; 136: 360-366.e2.

https://doi.org/10.1016/j.jaci.2015.02.003 DOI: https://doi.org/10.1016/j.jaci.2015.02.003

Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol 2018; 26: 484-497.

https://doi.org/10.1016/j.tim.2017.11.008 DOI: https://doi.org/10.1016/j.tim.2017.11.008

Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005; 5: 751-762.

https://doi.org/10.1016/S1473-3099(05)70295-4 DOI: https://doi.org/10.1016/S1473-3099(05)70295-4

Edslev SM, Olesen CM, Nørreslet LB, Ingham AC, Iversen S, Lilje B, et al. Staphylococcal communities on skin are associated with atopic dermatitis and disease severity. Microorganisms 2021; 9: 432.

https://doi.org/10.3390/microorganisms9020432 DOI: https://doi.org/10.3390/microorganisms9020432

Totté JEE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol 2016; 175: 687-695.

https://doi.org/10.1111/bjd.14566 DOI: https://doi.org/10.1111/bjd.14566

Edslev SM, Agner T, Andersen PS. Skin microbiome in atopic dermatitis. Acta Derm Venereol 2020; 100(12): adv00164.

https://doi.org/10.2340/00015555-3514 DOI: https://doi.org/10.2340/00015555-3514

Tam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr 2019; 7: microbiolspec.gpp3-0039-2018.

https://doi.org/10.1128/microbiolspec.GPP3-0039-2018 DOI: https://doi.org/10.1128/microbiolspec.GPP3-0039-2018

Blicharz L, Żochowski M, Szymanek-Majchrzak K, Czuwara J, Goldust M, Skowroński K, et al. Enterotoxin gene cluster and selX are associated with atopic dermatitis severity: a cross-sectional molecular study of Staphylococcus aureus superantigens. Cells 2022; 11: 3921.

https://doi.org/10.3390/cells11233921 DOI: https://doi.org/10.3390/cells11233921

Schlievert PM, Case LC, Strandberg KL, Abrams BB, Leung DYM. Superantigen profile of Staphylococcus aureus isolates from patients with steroid-resistant atopic dermatitis. Clin Infect Dis 2008; 46: 1562-1567.

https://doi.org/10.1086/586746 DOI: https://doi.org/10.1086/586746

Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 2011; 6: e17936.

https://doi.org/10.1371/journal.pone.0017936 DOI: https://doi.org/10.1371/journal.pone.0017936

Lewis-Jones S. Quality of life and childhood atopic dermatitis: the misery of living with childhood eczema. Int J Clin Pract 2006; 60: 984-992.

https://doi.org/10.1111/j.1742-1241.2006.01047.x DOI: https://doi.org/10.1111/j.1742-1241.2006.01047.x

Edslev SM, Clausen ML, Agner T, Stegger M, Andersen PS. Genomic analysis reveals different mechanisms of fusidic acid resistance in Staphylococcus aureus from Danish atopic dermatitis patients. J Antimicrob Chemother 2018; 73: 856-861.

https://doi.org/10.1093/jac/dkx481 DOI: https://doi.org/10.1093/jac/dkx481

Williams HC, Burney PG, Pembroke AC, Hay RJ. The U.K. Working Party's Diagnostic Criteria for Atopic Dermatitis. III. Independent hospital validation. Br J Dermatol 1994; 131: 406-416.

https://doi.org/10.1111/j.1365-2133.1994.tb08532.x DOI: https://doi.org/10.1111/j.1365-2133.1994.tb08532.x

Wildeman P, Tevell S, Eriksson C, Lagos AC, Söderquist B, Stenmark B. Genomic characterization and outcome of prosthetic joint infections caused by Staphylococcus aureus. Sci Rep 2020; 10: 5938.

https://doi.org/10.1038/s41598-020-62751-z DOI: https://doi.org/10.1038/s41598-020-62751-z

Parvizi J, Gehrke T. Proceedings of the Second International Consensus Meeting on Musculoskeletal Infection, Philadelphia, PA, 2018 [cited 2023 Mar 7]. Available from: https://upload.orthobullets.com/documents/temp/73c7b918-5f54-46d2-87cd-1ab75e3c3a9d50Proceedings%20of%20the%20Second%20International%20Consensus%20Meeting%20on%20Musculoskeletal%20Infection.pdf.

Clausen ML, Edslev SM, Andersen PS, Clemmensen K, Krogfelt KA, Agner T. Staphylococcus aureus colonization in atopic eczema and its association with filaggrin gene mutations. Br J Dermatol 2017; 177: 1394-1400.

https://doi.org/10.1111/bjd.15470 DOI: https://doi.org/10.1111/bjd.15470

PHYLOViZ Online [cited 2023 May 8]. Available from: https://online.phyloviz.net/index.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403-410.

https://doi.org/10.1016/S0022-2836(05)80360-2 DOI: https://doi.org/10.1016/S0022-2836(05)80360-2

Wheeler D, Bhagwat M. BLAST QuickStart: example-driven web-based BLAST tutorial. Methods Mol Biol 2007; 395: 149-176. DOI: https://doi.org/10.1385/1-59745-514-8:149

https://doi.org/10.1007/978-1-59745-514-5_9 DOI: https://doi.org/10.1007/978-1-59745-514-5_9

Geneious Academy. BLAST searching tutorial [cited 2023 Mar 11]. Available from: https://www.geneious.com/tutorials/sequence-searching/.

Yagi S, Wakaki N, Ikeda N, Takagi Y, Uchida H, Kato Y, et al. Presence of staphylococcal exfoliative toxin A in sera of patients with atopic dermatitis. Clin Exp Allergy 2004; 34: 984-993.

https://doi.org/10.1111/j.1365-2222.2004.1687.x DOI: https://doi.org/10.1111/j.1365-2222.2004.1687.x

Bunikowski R, Mielke ME, Skarabis H, Worm M, Anagnostopoulos I, Kolde G, et al. Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol 2000; 105: 814-819.

https://doi.org/10.1067/mai.2000.105528 DOI: https://doi.org/10.1067/mai.2000.105528

Tamai M, Yamazaki Y, Ito T, Nakagawa S, Nakamura Y. Pathogenic role of the staphylococcal accessory gene regulator quorum sensing system in atopic dermatitis. Front Cell Infect Microbiol 2023; 13: 1178650.

https://doi.org/10.3389/fcimb.2023.1178650 DOI: https://doi.org/10.3389/fcimb.2023.1178650

Blicharz L, Usarek P, Młynarczyk G, Skowroński K, Rudnicka L, Samochocki Z. Nasal colonization by staphylococci and severity of atopic dermatitis. Dermatitis 2020; 31: 215-222.

https://doi.org/10.1097/DER.0000000000000568 DOI: https://doi.org/10.1097/DER.0000000000000568

Novick RP. Pathogenicity islands and their role in staphylococcal biology. Microbiol Spectr 2019; 7: microbiolspec.gpp3-0062-2019.

https://doi.org/10.1128/microbiolspec.GPP3-0062-2019 DOI: https://doi.org/10.1128/microbiolspec.GPP3-0062-2019

Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 2018; 9: 2419.

https://doi.org/10.3389/fmicb.2018.02419 DOI: https://doi.org/10.3389/fmicb.2018.02419

Merriman JA, Mueller EA, Cahill MP, Beck LA, Paller AS, Hanifin JM, et al. Temporal and racial differences associated with atopic dermatitis Staphylococcus aureus and encoded virulence factors. mSphere 2016; 1: e00295-16.

https://doi.org/10.1128/mSphere.00295-16 DOI: https://doi.org/10.1128/mSphere.00295-16

Ogonowska P, Gilaberte Y, Barańska-Rybak W, Nakonieczna J. Colonization with Staphylococcus aureus in atopic dermatitis patients: attempts to reveal the unknown. Front Microbiol 2021; 11: 567090.

https://doi.org/10.3389/fmicb.2020.567090 DOI: https://doi.org/10.3389/fmicb.2020.567090

De Boer ML, Chow AW. Toxic shock syndrome toxin 1-producing Staphylococcus aureus isolates contain the staphylococcal enterotoxin B genetic element but do not express staphylococcal enterotoxin B. J Infect Dis 1994; 170: 818-827.

https://doi.org/10.1093/infdis/170.4.818 DOI: https://doi.org/10.1093/infdis/170.4.818

Rojo A, Aguinaga A, Monecke S, Yuste JR, Gastaminza G, España A. Staphylococcus aureus genomic pattern and atopic dermatitis: may factors other than superantigens be involved? Eur J Clin Microbiol Infect Dis 2014; 33: 651-658.

https://doi.org/10.1007/s10096-013-2000-z DOI: https://doi.org/10.1007/s10096-013-2000-z

Published

2024-06-11

How to Cite

Ratusznik, N. ., Edslev, S. M. ., Stegger, M., & Söderquist, B. (2024). Superantigen Encoding Genes in Staphylococcus aureus Isolated from Lesional Skin, Non-Lesional Skin, and Nares of Patients with Atopic Dermatitis. Acta Dermato-Venereologica, 104, adv34882. https://doi.org/10.2340/actadv.v104.34882