Significant Correlation Between Cutaneous Abundance of Streptococcus and Psoriasis Severity in Patients with FBXL19 Gene Variants

Authors

  • Malin Assarsson Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden
  • Jan Söderman Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
  • Oliver Seifert Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden

DOI:

https://doi.org/10.2340/actadv.v104.34892

Keywords:

microbiome, psoriasis, SNPs

Abstract

Psoriasis results from both genetic predisposition and environmental triggers, such as Streptococcal infections. This study aimed to explore the correlation between the abundance of the Streptococcus genus on the skin and psoriasis severity in individuals carrying specific psoriasis-associated genetic variants. Studying 39 chronic plaque psoriasis patients, the elbow skin microbiome and 49 psoriasis-related single nucleotide polymorphisms (SNPs) were analysed using a MiSeq instrument for 16S rDNA sequencing, and CLC Genomic Workbench for processing and analysis. Through multivariate linear regression analysis, a positive correlation was found between Streptococcus genus abundance and psoriasis severity in patients with certain FBXL19 gene-related heterozygous SNPs (rs12924903, rs10782001, rs12445568). Conversely, a negative association was observed in patients with homozygous genotypes. Moreover, we identified an association between Streptococcus abundance and psoriasis severity in patients with genetic variants related to IL-22, ERAP1, NOS2, and ILF3. This is the first study highlighting a positive association between Streptococcus skin colonization and psoriasis severity in patients with heterozygous genotypes within the FBXL19 gene region. FXBL19 targets the IL-33/IL1RL1 axis, crucial in infectious diseases and innate immunity promotion. These novel results suggests an intricate interaction among host genetics, Streptococcus skin colonization, and psoriasis inflammation, offering potential avenues for novel treatment approaches.

Downloads

Download data is not yet available.

Author Biography

Jan Söderman, Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Laboratory Medicine, Region Jönköping County, Jönköping, Sweden

  1.  

References

Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361: 496-509.

https://doi.org/10.1056/NEJMra0804595 DOI: https://doi.org/10.1056/NEJMra0804595

Gottlieb AB, Dann F. Comorbidities in patients with psoriasis. Am J Med 2009; 122: 1150 e1151-1159.

https://doi.org/10.1016/j.amjmed.2009.06.021 DOI: https://doi.org/10.1016/j.amjmed.2009.06.021

Grozdev I, Korman N, Tsankov N. Psoriasis as a systemic disease. Clin Dermatol 2014; 32: 343-350.

https://doi.org/10.1016/j.clindermatol.2013.11.001 DOI: https://doi.org/10.1016/j.clindermatol.2013.11.001

Fry L, Baker BS. Triggering psoriasis: the role of infections and medications. Clin Dermatol 2007; 25: 606-615.

https://doi.org/10.1016/j.clindermatol.2007.08.015 DOI: https://doi.org/10.1016/j.clindermatol.2007.08.015

Zeng J, Luo S, Huang Y, Lu Q. Critical role of environmental factors in the pathogenesis of psoriasis. J Dermatol 2017; 44: 863-872.

https://doi.org/10.1111/1346-8138.13806 DOI: https://doi.org/10.1111/1346-8138.13806

Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15: 382-392.

https://doi.org/10.1016/j.chom.2014.02.005 DOI: https://doi.org/10.1016/j.chom.2014.02.005

Sohail MU, Althani A, Anwar H, Rizzi R, Marei HE. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res 2017; 2017: 9631435.

https://doi.org/10.1155/2017/9631435 DOI: https://doi.org/10.1155/2017/9631435

Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 2015; 21: 895-905.

https://doi.org/10.1038/nm.3914 DOI: https://doi.org/10.1038/nm.3914

Fry L, Baker BS, Powles AV, Fahlen A, Engstrand L. Is chronic plaque psoriasis triggered by microbiota in the skin? Br J Dermatol 2013.

https://doi.org/10.1111/bjd.12322 DOI: https://doi.org/10.1111/bjd.12322

Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome 2018; 6: 154.

https://doi.org/10.1186/s40168-018-0533-1 DOI: https://doi.org/10.1186/s40168-018-0533-1

Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One 2008; 3: e2719.

https://doi.org/10.1371/journal.pone.0002719 DOI: https://doi.org/10.1371/journal.pone.0002719

Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 2013; 1: 31.

https://doi.org/10.1186/2049-2618-1-31 DOI: https://doi.org/10.1186/2049-2618-1-31

Tett A, Pasolli E, Farina S, Truong DT, Asnicar F, Zolfo M, et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. NPJ Biofilms Microbiomes 2017; 3: 14.

https://doi.org/10.1038/s41522-017-0022-5 DOI: https://doi.org/10.1038/s41522-017-0022-5

Boix-Amorós A, Badri MH, Manasson J, Blank RB, Haberman RH, Neimann AL, et al. Alterations in the cutaneous microbiome of patients with psoriasis and psoriatic arthritis reveal similarities between non-lesional and lesional skin. Ann Rheum Dis 2023; 82: 507-514.

https://doi.org/10.1136/ard-2022-223389 DOI: https://doi.org/10.1136/ard-2022-223389

Assarsson M, Duvetorp A, Dienus O, Söderman J, Seifert O. Significant changes in the skin microbiome in patients with chronic plaque psoriasis after treatment with narrowband ultraviolet B. Acta Derm Venereol 2018; 98: 428-436.

https://doi.org/10.2340/00015555-2859 DOI: https://doi.org/10.2340/00015555-2859

Assarsson M, Söderman J, Dienus O, Seifert O. Significant differences in the bacterial microbiome of the pharynx and skin in patients with psoriasis compared with healthy controls. Acta Derm Venereol 2020; 100: adv00273.

https://doi.org/10.2340/00015555-3619 DOI: https://doi.org/10.2340/00015555-3619

Woo YR, Cho DH, Park HJ. Molecular mechanisms and management of a cutaneous inflammatory disorder: psoriasis. Int J Mol Sci 2017; 18: 2684.

https://doi.org/10.3390/ijms18122684 DOI: https://doi.org/10.3390/ijms18122684

Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009; 41: 199-204.

https://doi.org/10.1038/ng.311 DOI: https://doi.org/10.1038/ng.311

Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet 2010; 42: 1000-1004.

https://doi.org/10.1038/ng.693 DOI: https://doi.org/10.1038/ng.693

Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012; 44: 1341-1348.

https://doi.org/10.1038/ng.2467 DOI: https://doi.org/10.1038/ng.2467

Norrlind R. The significance of infections in the origination of psoriasis. Acta Rheumatol Scand 1955; 1: 135-144.

https://doi.org/10.3109/rhe1.1955.1.issue-1-4.15 DOI: https://doi.org/10.3109/rhe1.1955.1.issue-1-4.15

Schon MP, Boehncke WH. Psoriasis. N Engl J Med 2005; 352: 1899-1912.

https://doi.org/10.1056/NEJMra041320 DOI: https://doi.org/10.1056/NEJMra041320

Tervaert WC, Esseveld H. A study of the incidence of haemolytic streptococci in the throat in patients with psoriasis vulgaris, with reference to their role in the pathogenesis of this disease. Dermatologica 1970; 140: 282-290.

https://doi.org/10.1159/000252565 DOI: https://doi.org/10.1159/000252565

Whyte HJ, Baughman RD. Acute guttate psoriasis and streptococcal infection. Arch Dermatol 1964; 89: 350-356.

https://doi.org/10.1001/archderm.1964.01590270036008 DOI: https://doi.org/10.1001/archderm.1964.01590270036008

Ruiz-Romeu E, Ferran M, Sagristà M, Gómez J, Giménez-Arnau A, Herszenyi K, et al. Streptococcus pyogenes-induced cutaneous lymphocyte antigen-positive T cell-dependent epidermal cell activation triggers TH17 responses in patients with guttate psoriasis. J Allergy Clin Immunol 2016; 138: 491-499.e496.

https://doi.org/10.1016/j.jaci.2016.02.008 DOI: https://doi.org/10.1016/j.jaci.2016.02.008

Zhou Y, Li N, Fan X, Xu M, Wang B. Intranasal streptococcal infection exacerbates psoriasis-like dermatitis via the induction of skin tissue-resident memory T cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869: 166629.

https://doi.org/10.1016/j.bbadis.2022.166629 DOI: https://doi.org/10.1016/j.bbadis.2022.166629

Diluvio L, Vollmer S, Besgen P, Ellwart JW, Chimenti S, Prinz JC. Identical TCR beta-chain rearrangements in streptococcal angina and skin lesions of patients with psoriasis vulgaris. J Immunol 2006; 176: 7104-7111.

https://doi.org/10.4049/jimmunol.176.11.7104 DOI: https://doi.org/10.4049/jimmunol.176.11.7104

Sigurdardottir SL, Thorleifsdottir RH, Valdimarsson H, Johnston A. The association of sore throat and psoriasis might be explained by histologically distinctive tonsils and increased expression of skin-homing molecules by tonsil T cells. Clin Exp Immunol 2013; 174: 139-151.

https://doi.org/10.1111/cei.12153 DOI: https://doi.org/10.1111/cei.12153

Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 2013; 26: 422-447.

https://doi.org/10.1128/CMR.00104-12 DOI: https://doi.org/10.1128/CMR.00104-12

Dupire G, Droitcourt C, Hughes C, Le Cleach L. Antistreptococcal interventions for guttate and chronic plaque psoriasis. Cochrane Database Syst Rev 2019; 3: Cd011571.

https://doi.org/10.1002/14651858.CD011571.pub2 DOI: https://doi.org/10.1002/14651858.CD011571.pub2

Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science 2009; 324: 1190-1192.

https://doi.org/10.1126/science.1171700 DOI: https://doi.org/10.1126/science.1171700

Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S, Raelson JV, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet 2010; 42: 991-995.

https://doi.org/10.1038/ng.689 DOI: https://doi.org/10.1038/ng.689

Liu J, Ye Z, Mayer JG, Hoch BA, Green C, Rolak L, et al. Phenome-wide association study maps new diseases to the human major histocompatibility complex region. J Med Genet 2016; 53: 681-689.

https://doi.org/10.1136/jmedgenet-2016-103867 DOI: https://doi.org/10.1136/jmedgenet-2016-103867

Strange A, Capon F, Spencer CC, Knight J, Weale ME, Allen MH, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 2010; 42: 985-990.

https://doi.org/10.1038/ng.694 DOI: https://doi.org/10.1038/ng.694

Villarreal-Martínez A, Gallardo-Blanco H, Cerda-Flores R, Torres-Muñoz I, Gómez-Flores M, Salas-Alanís J, et al. Candidate gene polymorphisms and risk of psoriasis: a pilot study. Exp Ther Med 2016; 11: 1217-1222.

https://doi.org/10.3892/etm.2016.3066 DOI: https://doi.org/10.3892/etm.2016.3066

Batalla A, Coto E, González-Lara L, González-Fernández D, Gómez J, Aranguren TF, et al. Association between single nucleotide polymorphisms IL17RA rs4819554 and IL17E rs79877597 and psoriasis in a Spanish cohort. J Dermatol Sci 2015; 80: 111-115.

https://doi.org/10.1016/j.jdermsci.2015.06.011 DOI: https://doi.org/10.1016/j.jdermsci.2015.06.011

Biswas S, Pal S, Majumder PP, Bhattacharjee S. A framework for pathway knowledge driven prioritization in genome-wide association studies. Genet Epidemiol 2020; 44: 841-853.

https://doi.org/10.1002/gepi.22345 DOI: https://doi.org/10.1002/gepi.22345

Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80: 273-290.

https://doi.org/10.1086/511051 DOI: https://doi.org/10.1086/511051

Weger W, Hofer A, Wolf P, El-Shabrawi Y, Renner W, Kerl H, et al. Common polymorphisms in the interleukin-22 gene are not associated with chronic plaque psoriasis. Exp Dermatol 2009; 18: 796-798.

https://doi.org/10.1111/j.1600-0625.2009.00840.x DOI: https://doi.org/10.1111/j.1600-0625.2009.00840.x

Liu Y, Helms C, Liao W, Zaba LC, Duan S, Gardner J, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 2008; 4: e1000041.

https://doi.org/10.1371/journal.pgen.1000041 DOI: https://doi.org/10.1371/journal.pgen.1000041

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol 2017; 8: 2224.

https://doi.org/10.3389/fmicb.2017.02224 DOI: https://doi.org/10.3389/fmicb.2017.02224

Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev 2004; 18: 2573-2580.

https://doi.org/10.1101/gad.1255304 DOI: https://doi.org/10.1101/gad.1255304

Zhao J, Wei J, Mialki RK, Mallampalli DF, Chen BB, Coon T, et al. F-box protein FBXL19-mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation. Nat Immunol 2012; 13: 651-658.

https://doi.org/10.1038/ni.2341 DOI: https://doi.org/10.1038/ni.2341

Wei J, Mialki RK, Dong S, Khoo A, Mallampalli RK, Zhao Y, et al. A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2. Biochim Biophys Acta 2013; 1833: 2757-2764.

https://doi.org/10.1016/j.bbamcr.2013.07.005 DOI: https://doi.org/10.1016/j.bbamcr.2013.07.005

Lu T, Jackson MW, Wang B, Yang M, Chance MR, Miyagi M, et al. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci U S A 2010; 107: 46-51.

https://doi.org/10.1073/pnas.0912493107 DOI: https://doi.org/10.1073/pnas.0912493107

Katoh M, Katoh M. Identification and characterization of FBXL19 gene in silico. Int J Mol Med 2004; 14: 1109-1114.

https://doi.org/10.3892/ijmm.14.6.1109 DOI: https://doi.org/10.3892/ijmm.14.6.1109

Cabaleiro T, Prieto-Pérez R, Navarro R, Solano G, Román M, Ochoa D, et al. Paradoxical psoriasiform reactions to anti-TNFα drugs are associated with genetic polymorphisms in patients with psoriasis. Pharmacogenomics J 2016; 16: 336-340.

https://doi.org/10.1038/tpj.2015.53 DOI: https://doi.org/10.1038/tpj.2015.53

Kuo CF, Chen WY, Yu HH, Tsai YH, Chang YC, Chang CP, et al. IL-33/ST2 axis plays a protective effect in Streptococcus pyogenes infection through strengthening of the innate immunity. Int J Mol Sci 2021; 22.

https://doi.org/10.3390/ijms221910566 DOI: https://doi.org/10.3390/ijms221910566

Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36: 1309-1323.

https://doi.org/10.1002/eji.200535503 DOI: https://doi.org/10.1002/eji.200535503

Duvetorp A, Pettersson K, Söderman J, Assarsson M, Seifert O. Narrowband-UVB treatment reduces levels of mediators of the Th17 pathway and chemotaxis in psoriatic skin without any concurring effect on mediator levels in serum. Eur J Dermatol 2022; 32: 250-259.

https://doi.org/10.1684/ejd.2022.4243 DOI: https://doi.org/10.1684/ejd.2022.4243

Fouad N, Mostafa F, Soltan M, Zaki A, Hassan RA. Skin colonization of Staphylococcus aureus harboring superantigen toxin genes and its correlation with serum IL-22 level in psoriasis patients. Egypt J Immunol 2022; 29: 94-105.

https://doi.org/10.55133/eji.290409 DOI: https://doi.org/10.55133/eji.290409

López de Castro JA. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front Immunol 2018; 9: 2463.

https://doi.org/10.3389/fimmu.2018.02463 DOI: https://doi.org/10.3389/fimmu.2018.02463

Képíró L, Széll M, Kovács L, Keszthelyi P, Kemény L, Gyulai R. The association of HLA-C and ERAP1 polymorphisms in early and late onset psoriasis and psoriatic arthritis patients of Hungary. Postepy Dermatol Alergol 2021; 38: 43-51.

https://doi.org/10.5114/ada.2021.104277 DOI: https://doi.org/10.5114/ada.2021.104277

Lysell J, Padyukov L, Kockum I, Nikamo P, Ståhle M. Genetic association with ERAP1 in psoriasis is confined to disease onset after puberty and not dependent on HLA-C*06. J Invest Dermatol 2013; 133: 411-417.

https://doi.org/10.1038/jid.2012.280 DOI: https://doi.org/10.1038/jid.2012.280

Marusina AI, Ji-Xu A, Le ST, Toussi A, Tsoi LC, Li Q, et al. Cell-specific, disease-associated and variant-linked alterations in expression Of ERAP1, ERAP2 and LNPEP aminopeptidases. J Invest Dermatol 2023; 143: 1157-1167.e10.

https://doi.org/10.1016/j.jid.2023.01.012 DOI: https://doi.org/10.1016/j.jid.2023.01.012

Arakawa A, Reeves E, Vollmer S, Arakawa Y, He M, Galinski A, et al. ERAP1 controls the autoimmune response against melanocytes in psoriasis by generating the melanocyte autoantigen and regulating its amount for HLA-C*06:02 presentation. J Immunol 2021; 207: 2235-2244.

https://doi.org/10.4049/jimmunol.2100686 DOI: https://doi.org/10.4049/jimmunol.2100686

Suresh S, Huard S, Dubois T. CARM1/PRMT4: making its mark beyond its function as a transcriptional coactivator. Trends Cell Biol 2021; 31: 402-417.

https://doi.org/10.1016/j.tcb.2020.12.010 DOI: https://doi.org/10.1016/j.tcb.2020.12.010

Nazitto R, Amon LM, Mast FD, Aitchison JD, Aderem A, Johnson JS, et al. ILF3 is a negative transcriptional regulator of innate immune responses and myeloid dendritic cell maturation. J Immunol 2021; 206: 2949-2965.

https://doi.org/10.4049/jimmunol.2001235 DOI: https://doi.org/10.4049/jimmunol.2001235

Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL, et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun 2015; 6: 6046. DOI: https://doi.org/10.1038/ncomms8741

https://doi.org/10.1038/ncomms7046 DOI: https://doi.org/10.1038/ncomms7046

Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet 2015; 97: 816-836.

https://doi.org/10.1016/j.ajhg.2015.10.019 DOI: https://doi.org/10.1016/j.ajhg.2015.10.019

Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A 1985; 82: 7738-7742.

https://doi.org/10.1073/pnas.82.22.7738 DOI: https://doi.org/10.1073/pnas.82.22.7738

Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2004; 2: 820-832.

https://doi.org/10.1038/nrmicro1004 DOI: https://doi.org/10.1038/nrmicro1004

Marriott HM, Ali F, Read RC, Mitchell TJ, Whyte MK, Dockrell DH. Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J 2004; 18: 1126-1128.

https://doi.org/10.1096/fj.03-1450fje DOI: https://doi.org/10.1096/fj.03-1450fje

Brüne B, von Knethen A, Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 1999; 6: 969-975.

https://doi.org/10.1038/sj.cdd.4400582 DOI: https://doi.org/10.1038/sj.cdd.4400582

Puliti M, von Hunolstein C, Bistoni F, Orefici G, Tissi L. Inhibition of nitric oxide synthase exacerbates group B streptococcus sepsis and arthritis in mice. Infect Immun 2004; 72: 4891-4894.

https://doi.org/10.1128/IAI.72.8.4891-4894.2004 DOI: https://doi.org/10.1128/IAI.72.8.4891-4894.2004

Published

2024-06-19

How to Cite

Assarsson, M., Söderman, J., & Seifert, O. (2024). Significant Correlation Between Cutaneous Abundance of Streptococcus and Psoriasis Severity in Patients with FBXL19 Gene Variants. Acta Dermato-Venereologica, 104, adv34892. https://doi.org/10.2340/actadv.v104.34892