Role of Mast Cells in the Pathogenesis of Pruritus in Mastocytosis

Authors

  • Dominika Kwiatkowska
  • Adam Reich Department of Dermatology, University of Rzeszow, Ul. Szopena 2, PL-35-055 Rzeszów, Poland

DOI:

https://doi.org/10.2340/actadv.v101.350

Keywords:

itch, mast cells, mastocytosis, pruritus

Abstract

Pruritus can be defined as an unpleasant sensation that evokes a desire to scratch and significantly impairs patients’ quality of life. Pruritus is widely observed in many dermatoses, including mastocytosis, a rare disease characterized by abnormal accumulation of mast cells, which can involve skin, bone marrow, and other organs. Increasing evidence highlights the role of mast cells in neurogenic inflammation and itching. Mast cells release various pruritogenic mediators, initiating subsequent mutual communication with specific nociceptors on sensory nerve fibres. Among important mediators released by mast cells that induce pruritus, one can distinguish histamine, serotonin, proteases, as well as various cytokines. During neuronal-induced inflammation, mast cells may respond to numerous mediators, including neuropeptides, such as substance P, neurokinin A, calcitonin gene-related peptide, endothelin 1, and nerve growth factor. Currently, treatment of pruritus in mastocytosis is focused on alleviating the effects of mediators secreted by mast cells. However, a deeper understanding of the intricacies of the neurobiology of this disease could help to provide better treatment options for patients.

Downloads

Download data is not yet available.

References

Reich A, Szepietowski JC. Diagnostic procedures of itch. Curr Probl Dermatol 2016; 50: 24-28.

https://doi.org/10.1159/000446013 DOI: https://doi.org/10.1159/000446013

Carter MC, Metcalfe DD, Komarow HD. Mastocytosis. Immunol Allergy Clin North Am 2014; 34: 181-196.

https://doi.org/10.1016/j.iac.2013.09.001 DOI: https://doi.org/10.1016/j.iac.2013.09.001

Le M, Miedzybrodzki B, Olynych T, Chapdelaine H, Ben-Shoshan M. Natural history and treatment of cutaneous and systemic mastocytosis. Postgrad Med 2017; 129: 896-901.

https://doi.org/10.1080/00325481.2017.1364124 DOI: https://doi.org/10.1080/00325481.2017.1364124

Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood 2017; 129: 1420-1427.

https://doi.org/10.1182/blood-2016-09-731893 DOI: https://doi.org/10.1182/blood-2016-09-731893

Bulat V, Mihić LL, Šitum M, Buljan M, Blajić I, Pušić J. Most common clinical presentations of cutaneous mastocytosis. Acta Clin Croat Suppl 2009; 48: 59-64.

Shomali W, Gotlib J. The new tool "kIT" in advanced systemic mastocytosis. Hematol (United States) 2018; 2018: 127-136.

https://doi.org/10.1182/asheducation-2018.1.127 DOI: https://doi.org/10.1182/asheducation-2018.1.127

Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 2010; 3: 111-128.

https://doi.org/10.1038/mi.2009.136 DOI: https://doi.org/10.1038/mi.2009.136

Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 2008; 8: 478-486.

https://doi.org/10.1038/nri2327 DOI: https://doi.org/10.1038/nri2327

Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol 2017; 188: 183-194.

https://doi.org/10.1111/cei.12952 DOI: https://doi.org/10.1111/cei.12952

Dong H, Zhang X, Qian Y. Mast cells and neuroinflammation. Med Sci Monit Basic Res 2014; 20: 200-206.

https://doi.org/10.12659/MSMBR.893093 DOI: https://doi.org/10.12659/MSMBR.893093

Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology 2014; 141: 314-327.

https://doi.org/10.1111/imm.12170 DOI: https://doi.org/10.1111/imm.12170

Dahlin JS, Malinovschi A, Öhrvik H, Sandelin M, Janson C, Alving K, et al. Lin- CD34hi CD117Int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood 2016; 127: 383-391.

https://doi.org/10.1182/blood-2015-06-650648 DOI: https://doi.org/10.1182/blood-2015-06-650648

Schmetzer O, Valentin P, Church MK, Maurer M, Siebenhaar F. Murine and human mast cell progenitors. Eur J Pharmacol 2016; 778: 2-10.

https://doi.org/10.1016/j.ejphar.2015.07.016 DOI: https://doi.org/10.1016/j.ejphar.2015.07.016

Walczak-Drzewiecka A, Salkowska A, Ratajewski M, Dastych J. Epigenetic regulation of CD34 and HIF1A expression during the differentiation of human mast cells. Immunogenetics 2013; 65: 429-348.

https://doi.org/10.1007/s00251-013-0695-8 DOI: https://doi.org/10.1007/s00251-013-0695-8

Silverman AJ, Sutherland AK, Wilhelm M, Silver R. Mast cells migrate from blood to brain. J Neurosci 2000; 20: 401-408.

https://doi.org/10.1523/JNEUROSCI.20-01-00401.2000 DOI: https://doi.org/10.1523/JNEUROSCI.20-01-00401.2000

Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 2012; 26: 3103-3117.

https://doi.org/10.1096/fj.11-197194 DOI: https://doi.org/10.1096/fj.11-197194

Matsson L. Mast cell heterogeneity in various oral mucosal sites in the rat. Arch Oral Biol 1992; 37: 445-450.

https://doi.org/10.1016/0003-9969(92)90098-S DOI: https://doi.org/10.1016/0003-9969(92)90098-S

Castells M, Butterfield J. Mast cell activation syndrome and mastocytosis: initial treatment options and long-term management. J Allergy Clin Immunol Pract 2019; 7: 1097-1106.

https://doi.org/10.1016/j.jaip.2019.02.002 DOI: https://doi.org/10.1016/j.jaip.2019.02.002

Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Br J Pharmacol 2013; 170: 23.

https://doi.org/10.1111/bph.12138 DOI: https://doi.org/10.1111/bph.12138

Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ. Evidence questioning cromolyn's effectiveness and selectivity as a "mast cell stabilizer" in mice. Lab Invest 2012; 92: 1472.

https://doi.org/10.1038/labinvest.2012.116 DOI: https://doi.org/10.1038/labinvest.2012.116

Song J, Xian D, Yang L, Xiong X, Lai R, Zhong J. Pruritus: progress toward pathogenesis and treatment. Biomed Res Int 2018; 2018: 9625936.

https://doi.org/10.1155/2018/9625936 DOI: https://doi.org/10.1155/2018/9625936

Azimi E, Xia J, Lerner EA. Peripheral mechanisms of itch. Curr Probl Dermatol 2016; 50: 18.

https://doi.org/10.1159/000446012 DOI: https://doi.org/10.1159/000446012

Weber A, Knop J, Maurer M. Pattern analysis of human cutaneous mast cell populations by total body surface mapping. Br J Dermatol 2003; 148: 224-228.

https://doi.org/10.1046/j.1365-2133.2003.05090.x DOI: https://doi.org/10.1046/j.1365-2133.2003.05090.x

Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, et al. Imaging of mast cells. Immunol Rev 2018; 282: 58-72.

https://doi.org/10.1111/imr.12631 DOI: https://doi.org/10.1111/imr.12631

Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2018; 282: 35-46.

https://doi.org/10.1111/imr.12636 DOI: https://doi.org/10.1111/imr.12636

Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 2017; 79: 119-133.

https://doi.org/10.1016/j.neubiorev.2017.05.001 DOI: https://doi.org/10.1016/j.neubiorev.2017.05.001

Janssens AS, Heide R, Den Hollander JC, Mulder PGM, Tank B, Oranje AP. Mast cell distribution in normal adult skin. J Clin Pathol 2005; 58: 285-289.

https://doi.org/10.1136/jcp.2004.017210 DOI: https://doi.org/10.1136/jcp.2004.017210

Siiskonen H, Harvima I. Mast cells and sensory nerves contribute to neurogenic inflammation and pruritus in chronic skin inflammation. Front Cell Neurosci 2019; 18; 13.

https://doi.org/10.3389/fncel.2019.00422 DOI: https://doi.org/10.3389/fncel.2019.00422

Chang SE, Han SS, Jung HJ, Choi JH. Neuropeptides and their receptors in psoriatic skin in relation to pruritus. Br J Dermatol 2007; 156: 1272-1277.

https://doi.org/10.1111/j.1365-2133.2007.07935.x DOI: https://doi.org/10.1111/j.1365-2133.2007.07935.x

Shim WS, Oh U. Histamine-induced itch and its relationship with pain. Mol Pain 2008; 4: 29.

https://doi.org/10.1186/1744-8069-4-29 DOI: https://doi.org/10.1186/1744-8069-4-29

Pentland AP, Mahoney M, Jacobs SC, Holtzman MJ. Enhanced prostaglandin synthesis after ultraviolet injury is mediated by endogenous histamine stimulation. A mechanism for irradiation erythema. J Clin Invest 1990; 86: 566-574.

https://doi.org/10.1172/JCI114746 DOI: https://doi.org/10.1172/JCI114746

Esbenshade TA, Fox GB, Cowart MD. Histamine H 3 receptor antagonists: preclinical promise for treating obesity and cognitive disorders. Mol Interv 2006; 6: 77-88.

https://doi.org/10.1124/mi.6.2.5 DOI: https://doi.org/10.1124/mi.6.2.5

Thurmond RL. The histamine H4 receptor: from orphan to the clinic. Front Pharmacol 2015; 6: 65.

https://doi.org/10.3389/fphar.2015.00065 DOI: https://doi.org/10.3389/fphar.2015.00065

Ohtsu H, Seike M. Histamine and histamine receptors in allergic dermatitis. Handb Exp Pharmacol 2017; 241: 333-345.

https://doi.org/10.1007/164_2016_9 DOI: https://doi.org/10.1007/164_2016_9

Dunford PJ, Williams KN, Desai PJ, Karlsson L, McQueen D, Thurmond RL. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 2007; 119: 176-183.

https://doi.org/10.1016/j.jaci.2006.08.034 DOI: https://doi.org/10.1016/j.jaci.2006.08.034

Jutel M, Watanabe T, Klunker S, Akdis M, Thomet OAR, Malolepszy J, et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001; 413: 420-425.

https://doi.org/10.1038/35096564 DOI: https://doi.org/10.1038/35096564

Campion M, Smith L, Gatault S, Métais C, Buddenkotte J, Steinhoff M. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp Dermatol 2019; 28: 1501-1504.

https://doi.org/10.1111/exd.14034 DOI: https://doi.org/10.1111/exd.14034

Bryce PJ, Mathias CB, Harrison KL, Watanabe T, Geha RS, Oettgen HC. The H1 histamine receptor regulates allergic lung responses. J Clin Invest 2006; 116: 1624-1632.

https://doi.org/10.1172/JCI26150 DOI: https://doi.org/10.1172/JCI26150

Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N, et al. Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest 2016; 126: 3981-3998.

https://doi.org/10.1172/JCI85538 DOI: https://doi.org/10.1172/JCI85538

Guhl S, Lee HH, Babina M, Henz BM, Zuberbier T. Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. J Neuroimmunol 2005; 163: 92-101.

https://doi.org/10.1016/j.jneuroim.2005.02.015 DOI: https://doi.org/10.1016/j.jneuroim.2005.02.015

Oda T, Morikawa N, Saito Y, Masuho Y, Matsumoto SI. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 2000; 275: 36781-36786.

https://doi.org/10.1074/jbc.M006480200 DOI: https://doi.org/10.1074/jbc.M006480200

Cowden JM, Zhang M, Dunford PJ, Thurmond RL. The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol 2010; 130: 1023-1033.

https://doi.org/10.1038/jid.2009.358 DOI: https://doi.org/10.1038/jid.2009.358

Gutzmer R, Mommert S, Gschwandtner M, Zwingmann K, Stark H, Werfel T. The histamine H4 receptor is functionally expressed on TH2 cells. J Allergy Clin Immunol 2009; 123: 619-625.

https://doi.org/10.1016/j.jaci.2008.12.1110 DOI: https://doi.org/10.1016/j.jaci.2008.12.1110

Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, et al. Relationship between serotonin and mast cells: inhibitory effect of anti-serotonin. J Biol Regul Homeost Agents 2014; 28: 377-380.

Yamaguchi T, Nagasawa T, Satoh M, Kuraishi Y. Itch-associated response induced by intradermal serotonin through 5-HT2 receptors in mice. Neurosci Res 1999; 35: 77-83.

https://doi.org/10.1016/S0168-0102(99)00070-X DOI: https://doi.org/10.1016/S0168-0102(99)00070-X

Nojima H, Carstens E. 5-Hydroxytryptamine (5-HT)2 receptor involvement in acute 5-HT-evoked scratching but not in allergic pruritus induced by dinitrofluorobenzene in rats. J Pharmacol Exp Ther 2003; 306: 245-252.

https://doi.org/10.1124/jpet.103.049239 DOI: https://doi.org/10.1124/jpet.103.049239

Luo J, Feng J, Yu G, Yang P, Mack MR, Du J, et al. Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol 2018; 141: 608-619.

https://doi.org/10.1016/j.jaci.2017.05.051 DOI: https://doi.org/10.1016/j.jaci.2017.05.051

Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, et al. Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 2016; 136: 154-160.

https://doi.org/10.1038/JID.2015.388 DOI: https://doi.org/10.1038/JID.2015.388

Snyder LM, Kuzirian MS, Ross SE. An unexpected role for TRPV4 in serotonin-mediated itch. J Invest Dermatol 2016; 136: 7-9.

https://doi.org/10.1016/j.jid.2015.11.010 DOI: https://doi.org/10.1016/j.jid.2015.11.010

Kushnir-Sukhov NM, Brittain E, Scott L, Metcalfe DD. Clinical correlates of blood serotonin levels in patients with mastocytosis. Eur J Clin Invest 2008; 38: 953-958.

https://doi.org/10.1111/j.1365-2362.2008.02047.x DOI: https://doi.org/10.1111/j.1365-2362.2008.02047.x

Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, et al. HTR7 mediates serotonergic acute and chronic itch. Neuron 2015; 87: 124-138.

https://doi.org/10.1016/j.neuron.2015.05.044 DOI: https://doi.org/10.1016/j.neuron.2015.05.044

Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 2003; 16; 23: 6176-6180.

https://doi.org/10.1523/JNEUROSCI.23-15-06176.2003 DOI: https://doi.org/10.1523/JNEUROSCI.23-15-06176.2003

Ui H, Andoh T, Lee JB, Nojima H, Kuraishi Y. Potent pruritogenic action of tryptase mediated by PAR-2 receptor and its involvement in anti-pruritic effect of nafamostat mesilate in mice. Eur J Pharmacol 2006; 530: 172-178.

https://doi.org/10.1016/j.ejphar.2005.11.021 DOI: https://doi.org/10.1016/j.ejphar.2005.11.021

Kempkes C, Buddenkotte J, Cevikbas F, Buhl T, Steinhoff M. Role of PAR-2 in neuroimmune communication and itch. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment. Boca Raton (FL): CRC Press/Taylor & Francis, 2014: p. 193-212.

Vitte J. Human mast cell tryptase in biology and medicine. Mol Immunol 2015; 63: 18-24.

https://doi.org/10.1016/j.molimm.2014.04.001 DOI: https://doi.org/10.1016/j.molimm.2014.04.001

Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 2000; 6: 151-158.

https://doi.org/10.1038/72247 DOI: https://doi.org/10.1038/72247

Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, et al. Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 2004; 24: 4293-4299.

https://doi.org/10.1523/JNEUROSCI.0454-04.2004 DOI: https://doi.org/10.1523/JNEUROSCI.0454-04.2004

Sperr WR, Jordan JH, Fiegl M, Escribano L, Bellas C, Dirnhofer S, et al. Serum tryptase levels in patients with mastocytosis: Correlation with mast cell burden and implication for defining the category of disease. Int Arch Allergy Immunol 2002; 128: 136-141.

https://doi.org/10.1159/000059404 DOI: https://doi.org/10.1159/000059404

Pierau F-K, Sann H, Müller S. Regulation of efferent functions of C-fiber nociceptors. In: Thermotherapy for neoplasia, inflammation, and pain. Tokyo: Springer, 2001: p. 514-522.

https://doi.org/10.1007/978-4-431-67035-3_59 DOI: https://doi.org/10.1007/978-4-431-67035-3_59

Chiu IM, Hehn CA von, Woolf CJ. Neurogenic inflammation - the peripheral nervous system's role in host defense and immunopathology. Nat Neurosci 2012; 15: 1063.

https://doi.org/10.1038/nn.3144 DOI: https://doi.org/10.1038/nn.3144

Pojawa-Gołąb M, Jaworecka K, Reich A. NK-1 receptor antagonists and pruritus: review of current literature. Dermatol Ther (Heidelb) 2019; 9: 391-405.

https://doi.org/10.1007/s13555-019-0305-2 DOI: https://doi.org/10.1007/s13555-019-0305-2

Hägermark Ö, Hökfelt T, Pernow B. Flare and itch induced by substance P in human skin. J Invest Dermatol 1978; 71: 233-235.

https://doi.org/10.1111/1523-1747.ep12515092 DOI: https://doi.org/10.1111/1523-1747.ep12515092

Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E, et al. Keratinocyte expression of calcitonin gene-related peptide β: Implications for neuropathic and inflammatory pain mechanisms. Pain 2011; 152: 2036-2051.

https://doi.org/10.1016/j.pain.2011.04.033 DOI: https://doi.org/10.1016/j.pain.2011.04.033

Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain 2013; 14: 1289-1303.

https://doi.org/10.1016/j.jpain.2013.03.010 DOI: https://doi.org/10.1016/j.jpain.2013.03.010

Trentin PG, Fernandes MB, D'Orléans-Juste P, Rae GA. Endothelin-1 causes pruritus in mice. Exp Biol Med 2006; 231: 1146-1151.

Hans G, Deseure K, Adriaensen H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides 2008; 42: 119-132.

https://doi.org/10.1016/j.npep.2007.12.001 DOI: https://doi.org/10.1016/j.npep.2007.12.001

Kremer AE, Feramisco J, Reeh PW, Beuers U, Oude Elferink RPJ. Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim Biophys Acta - Mol Basis Dis 2014; 1842: 869-892.

https://doi.org/10.1016/j.bbadis.2014.02.007 DOI: https://doi.org/10.1016/j.bbadis.2014.02.007

Kido-Nakahara M, Buddenkotte J, Kempkes C, Ikoma A, Cevikbas F, Akiyama T, et al. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1-induced pruritus. J Clin Invest 2014; 124: 2683-2695.

https://doi.org/10.1172/JCI67323 DOI: https://doi.org/10.1172/JCI67323

Peng WM, Maintz L, Allam JP, Raap U, Gutgemann I, Kirfel J, et al. Increased circulating levels of neurotrophins and elevated expression of their high-affinity receptors on skin and gut mast cells in mastocytosis. Blood 2013; 122: 1779-1788.

https://doi.org/10.1182/blood-2012-12-469882 DOI: https://doi.org/10.1182/blood-2012-12-469882

Yamaguchi J, Aihara M, Kobayashi Y, Kambara T, Ikezawa Z. Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J Dermatol Sci 2009; 53: 48-54.

https://doi.org/10.1016/j.jdermsci.2008.08.011 DOI: https://doi.org/10.1016/j.jdermsci.2008.08.011

Kinkelin I, Mötzing S, Koltzenburg M, Bröcker EB. Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res 2000; 302: 31-37.

https://doi.org/10.1007/s004410000202 DOI: https://doi.org/10.1007/s004410000202

Yang M, Pan Z, Huang K, Büsche G, Feuerhake F, Chaturvedi A, et al. Activation of TRKA receptor elicits mastocytosis in mice and is involved in the development of resistance to KIT-targeted therapy. Oncotarget 2017; 8: 73871-73883.

https://doi.org/10.18632/oncotarget.18027 DOI: https://doi.org/10.18632/oncotarget.18027

Zeidler C, Ständer S. The pathogenesis of prurigo nodularis - "Super-Itch" in exploration. Eur J Pain (UK) 2016; 20: 37-40.

https://doi.org/10.1002/ejp.767 DOI: https://doi.org/10.1002/ejp.767

Akiyama T, Nguyen T, Curtis E, Nishida K, Devireddy J, Delahanty J, et al. A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain 2015; 156: 1240-1246.

https://doi.org/10.1097/j.pain.0000000000000172 DOI: https://doi.org/10.1097/j.pain.0000000000000172

Takamori A, Nambu A, Sato K, Yamaguchi S, Matsuda K, Numata T, et al. IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Sci Rep 2018; 8: 1-11.

https://doi.org/10.1038/s41598-018-25094-4 DOI: https://doi.org/10.1038/s41598-018-25094-4

Rava M, Taresa L, Lavi I, Barreiro E, Zock JP, Ferrer A, et al. Serum levels of Clara cell secretory protein, asthma, and lung function in the adult general population. J Allergy Clin Immunol 2013; 132: 230-232.

https://doi.org/10.1016/j.jaci.2013.01.023 DOI: https://doi.org/10.1016/j.jaci.2013.01.023

Lange M, Gleń J, Zabłotna M, Nedoszytko B, Sokołowska-Wojdyło M, Rębała K, et al. Interleukin-31 polymorphisms and serum IL-31 level in patients with mastocytosis: Correlation with clinical presentation and pruritus. Acta Derm Venereol 2017; 97: 47-53.

https://doi.org/10.2340/00015555-2474 DOI: https://doi.org/10.2340/00015555-2474

Gibbs BF, Patsinakidis N, Raap U. Role of the pruritic cytokine IL-31 in autoimmune skin diseases. Front Immunol 2019; 10: 1383.

https://doi.org/10.3389/fimmu.2019.01383 DOI: https://doi.org/10.3389/fimmu.2019.01383

Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 2008; 19: 347-356.

https://doi.org/10.1016/j.cytogfr.2008.08.003 DOI: https://doi.org/10.1016/j.cytogfr.2008.08.003

Hermans MAW, Schrijver B, van Holten-Neelen CCPA, Gerth van Wijk R, van Hagen PM, van Daele PLA, et al. The JAK1/JAK2- inhibitor ruxolitinib inhibits mast cell degranulation and cytokine release. Clin Exp Allergy 2018; 48: 1412-1420.

https://doi.org/10.1111/cea.13217 DOI: https://doi.org/10.1111/cea.13217

Meixiong J, Dong X. Mas-related G protein-coupled receptors and the biology of itch sensation. Annu Rev Genet 2017; 51: 103-121.

https://doi.org/10.1146/annurev-genet-120116-024723 DOI: https://doi.org/10.1146/annurev-genet-120116-024723

Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, et al. Activation of mast-cell-expressed Mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 2019; 50: 1163-1171.

https://doi.org/10.1016/j.immuni.2019.03.013 DOI: https://doi.org/10.1016/j.immuni.2019.03.013

Lange M, Niedoszytko M, Renke J, Gleń J, Nedoszytko B. Clinical aspects of paediatric mastocytosis: a review of 101 cases. J Eur Acad Dermatology Venereol 2013; 27: 97-102.

https://doi.org/10.1111/j.1468-3083.2011.04365.x DOI: https://doi.org/10.1111/j.1468-3083.2011.04365.x

Topar G, Staudacher C, Geisen F, Gabl C, Fend F, Herold M, et al. Urticaria pigmentosa: a clinical, hematopathologic, and serologic study of 30 adults. Am J Clin Pathol 1998; 109: 279-285.

https://doi.org/10.1093/ajcp/109.3.279 DOI: https://doi.org/10.1093/ajcp/109.3.279

Azaña JM, Torrelo A, Mediero IG, Zambrano A. Urticaria pigmentosa: a review of 67 pediatric cases. Pediatr Dermatol 1994; 11: 102-106.

https://doi.org/10.1111/j.1525-1470.1994.tb00560.x DOI: https://doi.org/10.1111/j.1525-1470.1994.tb00560.x

Czarny J, Lange M, Ługowska-Umer H, Nowicki RJ. Cutaneous mastocytosis treatment: strategies, limitations and perspectives. Adv Dermatol Allergol 2018; 35: 541-545.

https://doi.org/10.5114/ada.2018.77605 DOI: https://doi.org/10.5114/ada.2018.77605

Siebenhaar F, Akin C, Bindslev-Jensen C, Maurer M, Broesby-Olsen S. Treatment strategies in mastocytosis. Immunol Allergy Clin North Am 2014; 34: 433-447.

https://doi.org/10.1016/j.iac.2014.01.012 DOI: https://doi.org/10.1016/j.iac.2014.01.012

Lange M, Flisiak I, Kapinska-Mrowiecka ML, Kaszuba A, Maj J, Rudnicka L, et al. Mastocytosis. Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Dermatol Rev 2018; 105: 358-383.

Arock M, Akin C, Hermine O, Valent P. Current treatment options in patients with mastocytosis: Status in 2015 and future perspectives. Eur J Haematol 2015; 94: 474-490.

https://doi.org/10.1111/ejh.12544 DOI: https://doi.org/10.1111/ejh.12544

Siebenhaar F, Förtsch A, Krause K, Weller K, Metz M, Magerl M, et al. Rupatadine improves quality of life in mastocytosis: a randomized, double-blind, placebo-controlled trial. Allergy Eur J Allergy Clin Immunol 2013; 68: 949-952.

https://doi.org/10.1111/all.12159 DOI: https://doi.org/10.1111/all.12159

Zuberbier T, Aberer W, Asero R, Bindslev-Jensen C, Brzoza Z, Canonica GW, et al. Methods report on the development of the 2013 revision and update of the EAACI/GA2LEN/EDF/WAO guideline for the definition, classification, diagnosis, and management of urticaria. Allergy Eur J Allergy Clin Immunol 2014; 69: e1-29.

https://doi.org/10.1111/all.12370 DOI: https://doi.org/10.1111/all.12370

Gasior-Chrzan B, Falk ES. Systemic mastocytosis treated with histamine H1 and H2 receptor antagonists. Dermatology 1992; 184: 149-152.

https://doi.org/10.1159/000247526 DOI: https://doi.org/10.1159/000247526

Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Front Immunol 2018; 9: 1873.

https://doi.org/10.3389/fimmu.2018.01873 DOI: https://doi.org/10.3389/fimmu.2018.01873

Brazzelli V, Grassi S, Merante S, Grasso V, Ciccocioppo R, Bossi G, et al. Narrow-band UVB phototherapy and psoralen-ultraviolet A photochemotherapy in the treatment of cutaneous mastocytosis: a study in 20 patients. Photodermatol Photoimmunol Photomed 2016; 32: 238-246.

https://doi.org/10.1111/phpp.12248 DOI: https://doi.org/10.1111/phpp.12248

Godt O, Proksch E, Streit V, Christophers E. Short- and long-term effectiveness of oral and bath puva therapy in urticaria pigmentosa and systemic mastocytosis. Dermatology 1997; 195: 35-39.

https://doi.org/10.1159/000245681 DOI: https://doi.org/10.1159/000245681

Seckin D, Demircay Z, Akin O. Generalized pruritus treated with narrowband UVB. Int J Dermatol 2007; 46: 367-370.

https://doi.org/10.1111/j.1365-4632.2007.03048.x DOI: https://doi.org/10.1111/j.1365-4632.2007.03048.x

Gobello T, Mazzanti C, Sordi D, Annessi G, Abeni D, Chinni LM, et al. Medium- versus high-dose ultraviolet A1 therapy for urticaria pigmentosa: a pilot study. J Am Acad Dermatol 2003; 49: 679-684.

https://doi.org/10.1067/S0190-9622(03)01483-X DOI: https://doi.org/10.1067/S0190-9622(03)01483-X

Szepietowski JC, Morita A, Tsuji T. Ultraviolet B induces mast cell apoptosis: a hypothetical mechanism of ultraviolet B treatment for uraemic pruritus. Med Hypothes 2002; 58: 167-170.

https://doi.org/10.1054/mehy.2001.1505 DOI: https://doi.org/10.1054/mehy.2001.1505

Szepietowski J, Thepen T, van Vloten WA, Szepietowski T, Bihari IC. Pruritus and mast cell proliferation in the skin of haemodialysis patients. Inflamm Res 1995; 44: 84-85.

https://doi.org/10.1007/BF01674408 DOI: https://doi.org/10.1007/BF01674408

Matsumoto M, Ichimaru K, Horie A. Pruritus and mast cell proliferation of the skin in end stage renal failure. Clin Nephrol 1985; 23: 285-288.

Dimković N, Djukanović L, Radmilović A, Bojić P, Juloski T. Uremic pruritus and skin mast cells. Nephron 1992; 61: 5-9.

https://doi.org/10.1159/000186826 DOI: https://doi.org/10.1159/000186826

Bağci IS, Ruzicka T. IL-31: a new key player in dermatology and beyond. J Allergy Clin Immunol 2018; 141: 858-866.

https://doi.org/10.1016/j.jaci.2017.10.045 DOI: https://doi.org/10.1016/j.jaci.2017.10.045

Hinojosa T, Lewis DJ, Vangipuram R, Safeer L, Mui UN, Haley C, et al. The efficacy of omalizumab in Cutaneous Mastocytosis: a case series. Dermatol Ther 2019; 32: e12848.

https://doi.org/10.1111/dth.12848 DOI: https://doi.org/10.1111/dth.12848

Yosipovitch G, Ständer S, Kerby MB, Larrick JW, Perlman AJ, Schnipper EF, et al. Serlopitant for the treatment of chronic pruritus: results of a randomized, multicenter, placebo-controlled phase 2 clinical trial. J Am Acad Dermatol 2018; 78: 882-891.

https://doi.org/10.1016/j.jaad.2018.02.030 DOI: https://doi.org/10.1016/j.jaad.2018.02.030

Ständer S, Kwon P, Hirman J, Perlman AJ, Weisshaar E, Metz M, et al. Serlopitant reduced pruritus in patients with prurigo nodularis in a phase 2, randomized, placebo-controlled trial. J Am Acad Dermatol 2019; 80: 1395-1402.

https://doi.org/10.1016/j.jaad.2019.01.052 DOI: https://doi.org/10.1016/j.jaad.2019.01.052

Heitman A, Xiao C, Cho Y, Polymeropoulos C, Birznieks G, Polymeropoulos M. Tradipitant improves worst itch and disease severity in patients with chronic pruritus related to atopic dermatitis. J Am Acad Dermatol 2018; 79: AB300.

https://doi.org/10.1016/j.jaad.2018.05.1184 DOI: https://doi.org/10.1016/j.jaad.2018.05.1184

Tsianakas A, Zeidler C, Riepe C, Borowski M, Forner C, Gerss J, et al. Aprepitant in anti-histamine-refractory chronic nodular prurigo: a multicentre, randomized, double-blind, placebo-controlled, cross-over, phase-II trial (APREPRU). Acta Derm Venereol 2019; 99: 379-385.

https://doi.org/10.2340/00015555-3120 DOI: https://doi.org/10.2340/00015555-3120

Pariser DM, Bagel J, Lebwohl M, Yosipovitch G, Chien E, Spellman MC. Serlopitant for psoriatic pruritus: a phase 2 randomized, double-blind, placebo-controlled clinical trial. J Am Acad Dermatol 2020; 82: 1314-1320.

https://doi.org/10.1016/j.jaad.2020.01.056 DOI: https://doi.org/10.1016/j.jaad.2020.01.056

Lortholary O, Chandesris MO, Livideanu CB, Paul C, Guillet G, Jassem E, et al. Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo-controlled, phase 3 study. Lancet 2017; 389: 612-620.

https://doi.org/10.1016/S0140-6736(16)31403-9 DOI: https://doi.org/10.1016/S0140-6736(16)31403-9

Feldman SR, Thaçi D, Gooderham M, Augustin M, de la Cruz C, Mallbris L, et al. Tofacitinib improves pruritus and health-related quality of life up to 52 weeks: results from 2 randomized phase III trials in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol 2016; 75: 1162-1170.

https://doi.org/10.1016/j.jaad.2016.07.040 DOI: https://doi.org/10.1016/j.jaad.2016.07.040

Ständer S, Luger TA, Cappelleri JC, Bushmakin AG, Mamolo C, Zielinski MA, et al. Validation of the itch severity item as a measurement tool for pruritus in patients with psoriasis: results from a phase 3 tofacitinib program. Acta Derm Venereol 2018; 98: 340-345.

https://doi.org/10.2340/00015555-2856 DOI: https://doi.org/10.2340/00015555-2856

Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 2017; 171: 217-228.

https://doi.org/10.1016/j.cell.2017.08.006 DOI: https://doi.org/10.1016/j.cell.2017.08.006

Bissonnette R, Papp KA, Poulin Y, Gooderham M, Raman M, Mallbris L, et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol 2016; 175: 902-911.

https://doi.org/10.1111/bjd.14871 DOI: https://doi.org/10.1111/bjd.14871

Fukuyama T, Ehling S, Cook E, Bäumer W. Topically administered janus-kinase inhibitors tofacitinib and oclacitinib display impressive antipruritic and anti-inflammatory responses in a model of allergic dermatitis. J Pharmacol Exp Ther 2015; 354: 394-405.

https://doi.org/10.1124/jpet.115.223784 DOI: https://doi.org/10.1124/jpet.115.223784

Published

2021-10-31

How to Cite

Kwiatkowska, D., & Reich, A. (2021). Role of Mast Cells in the Pathogenesis of Pruritus in Mastocytosis. Acta Dermato-Venereologica, 101(10), adv00583. https://doi.org/10.2340/actadv.v101.350