Impact of Etanercept on Vitamin D Status and Vitamin D-binding Protein in Bio-naïve Patients with Psoriasis

Authors

  • Maria Siekkeri Vandikas Dermatology and Venereology Unit, Karolinska University Hospital, Solna, Eugeniavägen 3, A6:01, SE-171 76, Stockholm, Sweden
  • Kerstin Landin-Wilhelmsen
  • Sam Polesie
  • Martin Gillstedt
  • Amra Osmancevic

DOI:

https://doi.org/10.2340/actadv.v101.359

Keywords:

psoriasis, psoriatic arthritis, tumour necrosis factor inhibitor, vitamin D, vitamin D-binding protein, biomarker

Abstract

High levels of serum vitamin D-binding protein have been shown previously in patients with psoriasis compared with healthy controls; a possible role in inflammation is implied. The primary objective of this study was to investigate the impact of 24-week etanercept treatment on vitamin D status and vitamin D-binding protein in patients with psoriasis. The secondary aim was to explore whether pre-treatment vitamin D levels could predict the treatment effect. A prospective observational study was performed, including 20 patients with psoriasis and 15 controls. Serum samples were analyzed for, among others, vitamin D metabolites, vitamin D-binding protein and highly sensitive C-reactive protein. Baseline levels of vitamin D-binding protein were higher in patients with self-reported arthropathy than in those without. After 24 weeks’ treatment, an improvement in psoriasis was noted, as was a decrease in highly sensitive C-reactive protein. Vitamin D-binding protein decreased in those with self-reported arthropathy. Higher baseline levels of vitamin D were associated with faster and greater improvement in psoriasis. Vitamin D-binding protein may have an inflammatory biomarker role.

Downloads

Download data is not yet available.

References

Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 2020; 323: 1945-1960.

https://doi.org/10.1001/jama.2020.4006 DOI: https://doi.org/10.1001/jama.2020.4006

Takeshita J, Grewal S, Langan SM, Mehta NN, Ogdie A, Van Voorhees AS, et al. Psoriasis and comorbid diseases: epidemiology. J Am Acad Dermatol 2017; 76: 377-390.

https://doi.org/10.1016/j.jaad.2016.07.064 DOI: https://doi.org/10.1016/j.jaad.2016.07.064

Mahil SK, Capon F, Barker JN. Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin Immunopathol 2016; 38: 11-27.

https://doi.org/10.1007/s00281-015-0539-8 DOI: https://doi.org/10.1007/s00281-015-0539-8

Hambly R, Kirby B. The relevance of serum vitamin D in psoriasis: a review. Arch Dermatol Res 2017; 309: 499-517.

https://doi.org/10.1007/s00403-017-1751-2 DOI: https://doi.org/10.1007/s00403-017-1751-2

Barrea L, Savanelli MC, Di Somma C, Napolitano M, Megna M, Colao A, et al. Vitamin D and its role in psoriasis: an overview of the dermatologist and nutritionist. Rev Endocr Metab Disord 2017; 18: 195-205.

https://doi.org/10.1007/s11154-017-9411-6 DOI: https://doi.org/10.1007/s11154-017-9411-6

Kuo YT, Kuo CH, Lam KP, Chu YT, Wang WL, Huang CH, et al. Effects of vitamin D3 on expression of tumor necrosis factor-alpha and chemokines by monocytes. J Food Sci 2010; 75: H200-H204.

https://doi.org/10.1111/j.1750-3841.2010.01704.x DOI: https://doi.org/10.1111/j.1750-3841.2010.01704.x

Stio M, Martinesi M, Bruni S, Treves C, d'Albasio G, Bagnoli S, et al. Interaction among vitamin D(3) analogue KH 1060, TNF-alpha, and vitamin D receptor protein in peripheral blood mononuclear cells of inflammatory bowel disease patients. Int Immunopharmacol 2006; 6: 1083-1092.

https://doi.org/10.1016/j.intimp.2006.01.018 DOI: https://doi.org/10.1016/j.intimp.2006.01.018

Inanir A, Ozoran K, Tutkak H, Mermerci B. The effects of calcitriol therapy on serum interleukin-1, interleukin-6 and tumour necrosis factor-alpha concentrations in post-menopausal patients with osteoporosis. J Int Med Res 2004; 32: 570-582.

https://doi.org/10.1177/147323000403200602 DOI: https://doi.org/10.1177/147323000403200602

van Hamburg JP, Asmawidjaja PS, Davelaar N, Mus AM, Cornelissen F, van Leeuwen JP, et al. TNF blockade requires 1,25(OH)2D3 to control human Th17-mediated synovial inflammation. Ann Rheum Dis 2012; 71: 606-612.

https://doi.org/10.1136/annrheumdis-2011-200424 DOI: https://doi.org/10.1136/annrheumdis-2011-200424

Dankers W, González-Leal C, Davelaar N, Asmawidjaja PS, Mus AMC, Hazes JMW, et al. 1,25(OH)(2)D(3) and dexamethasone additively suppress synovial fibroblast activation by CCR6(+) T helper memory cells and enhance the effect of tumor necrosis factor alpha blockade. Arthritis Res Ther 2018; 20: 212.

https://doi.org/10.1186/s13075-018-1706-9 DOI: https://doi.org/10.1186/s13075-018-1706-9

Winter RW, Collins E, Cao B, Carrellas M, Crowell AM, Korzenik JR. Higher 25-hydroxyvitamin D levels are associated with greater odds of remission with anti-tumour necrosis factor-α medications among patients with inflammatory bowel diseases. Aliment Pharmacol Ther 2017; 45: 653-659.

https://doi.org/10.1111/apt.13936 DOI: https://doi.org/10.1111/apt.13936

Martinez-Lopez A, Blasco-Morente G, Giron-Prieto MS, Arrabal-Polo MA, Luque-Valenzuela M, Luna-Del Castillo JD, et al. Linking of psoriasis with osteopenia and osteoporosis: a cross-sectional study. Indian J Dermatol Venereol Leprol 2019; 85: 153-159.

https://doi.org/10.4103/ijdvl.IJDVL_831_17 DOI: https://doi.org/10.4103/ijdvl.IJDVL_831_17

Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D binding protein: a historic overview. Front Endocrinol 2020; 10: 910.

https://doi.org/10.3389/fendo.2019.00910 DOI: https://doi.org/10.3389/fendo.2019.00910

Chun RF, Shieh A, Gottlieb C, Yacoubian V, Wang J, Hewison M, et al. Vitamin D binding protein and the biological activity of vitamin D. Front Endocrinol (Lausanne) 2019; 10: 718.

https://doi.org/10.3389/fendo.2019.00718 DOI: https://doi.org/10.3389/fendo.2019.00718

Guha C, Osawa M, Werner PA, Galbraith RM, Paddock GV. Regulation of human Gc (vitamin D-binding) protein levels: hormonal and cytokine control of gene expression in vitro. Hepatology (Baltimore, MD) 1995; 21: 1675-1681. DOI: https://doi.org/10.1002/hep.1840210628

https://doi.org/10.1016/0270-9139(95)90474-3 DOI: https://doi.org/10.1016/0270-9139(95)90474-3

Delanghe JR, Speeckaert R, Speeckaert MM. Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract Res Clin Endocrinol Metab 2015; 29: 773-786.

https://doi.org/10.1016/j.beem.2015.06.006 DOI: https://doi.org/10.1016/j.beem.2015.06.006

Kongsbak M, von Essen MR, Levring TB, Schjerling P, Woetmann A, Ødum N, et al. Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunol 2014; 15: 35-35.

https://doi.org/10.1186/s12865-014-0035-2 DOI: https://doi.org/10.1186/s12865-014-0035-2

Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D, Briggs Z, et al. Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 2012; 189: 5155-5164.

https://doi.org/10.4049/jimmunol.1200786 DOI: https://doi.org/10.4049/jimmunol.1200786

Speeckaert MM, Speeckaert R, van Geel N, Delanghe JR. Vitamin D binding protein: a multifunctional protein of clinical importance. Adv Clin Chem 2014; 63: 1-57.

https://doi.org/10.1016/B978-0-12-800094-6.00001-7 DOI: https://doi.org/10.1016/B978-0-12-800094-6.00001-7

Oleröd G, Hultén LM, Hammarsten O, Klingberg E. The variation in free 25-hydroxy vitamin D and vitamin D-binding protein with season and vitamin D status. Endocrine Connections 2017; 6: 111-120.

https://doi.org/10.1530/EC-16-0078 DOI: https://doi.org/10.1530/EC-16-0078

Vandikas MS, Landin-Wilhelmsen K, Holmäng A, Gillstedt M, Osmancevic A. High levels of serum vitamin D-binding protein in patients with psoriasis: a case-control study and effects of ultraviolet B phototherapy. J Steroid Biochem Mol Biol 2021; 211: 105895.

https://doi.org/10.1016/j.jsbmb.2021.105895 DOI: https://doi.org/10.1016/j.jsbmb.2021.105895

Flytström I, Stenberg B, Svensson Å, Bergbrant IM. Patients' visual analogue scale: a useful method for assessing psoriasis severity. Acta Derm Venereol 2012; 92: 347-348.

https://doi.org/10.2340/00015555-1237 DOI: https://doi.org/10.2340/00015555-1237

Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 1988; 124: 869-871. DOI: https://doi.org/10.1001/archderm.124.6.869

https://doi.org/10.1001/archderm.1988.01670060015008 DOI: https://doi.org/10.1001/archderm.1988.01670060015008

Zator ZA, Cantu SM, Konijeti GG, Nguyen DD, Sauk J, Yajnik V, et al. Pretreatment 25-hydroxyvitamin D levels and durability of anti-tumor necrosis factor-α therapy in inflammatory bowel diseases. JPEN J Parenter Enteral Nutr 2014; 38: 385-391.

https://doi.org/10.1177/0148607113504002 DOI: https://doi.org/10.1177/0148607113504002

Bafutto M, Oliveira EC, Rezende Filho J. Use of vitamin D with anti-tumor necrosis factor therapy for Crohn's disease. Gastroenterology Res 2020; 13: 101-106.

https://doi.org/10.14740/gr1264 DOI: https://doi.org/10.14740/gr1264

Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1911-1930.

https://doi.org/10.1210/jc.2011-0385 DOI: https://doi.org/10.1210/jc.2011-0385

Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 1986; 63: 954-959.

https://doi.org/10.1210/jcem-63-4-954 DOI: https://doi.org/10.1210/jcem-63-4-954

Welsh P, Peters MJ, McInnes IB, Lems WF, Lips PT, McKellar G, et al. Vitamin D deficiency is common in patients with RA and linked to disease activity, but circulating levels are unaffected by TNFα blockade: results from a prospective cohort study. Ann Rheum Dis 2011; 70: 1165-1167.

https://doi.org/10.1136/ard.2010.137265 DOI: https://doi.org/10.1136/ard.2010.137265

Gisondi P, Cotena C, Tessari G, Girolomoni G. Anti-tumour necrosis factor-alpha therapy increases body weight in patients with chronic plaque psoriasis: a retrospective cohort study. J Eur Acad Dermatol Venereol 2008; 22: 341-344.

https://doi.org/10.1111/j.1468-3083.2007.02429.x DOI: https://doi.org/10.1111/j.1468-3083.2007.02429.x

Ganzetti G, Campanati A, Scocco V, Brugia M, Tocchini M, Liberati G, et al. The potential effect of the tumour necrosis factor-α inhibitors on vitamin D status in psoriatic patients. Acta Derm Venereol 2014; 94: 715-717.

https://doi.org/10.2340/00015555-1801 DOI: https://doi.org/10.2340/00015555-1801

Yousefzadeh P, Shapses SA, Wang X. Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions. Int J Endocrinol 2014; 2014: 981581.

https://doi.org/10.1155/2014/981581 DOI: https://doi.org/10.1155/2014/981581

Ekman AK, Sigurdardottir G, Carlstrom M, Kartul N, Jenmalm MC, Enerback C. Systemically elevated Th1-, Th2- and Th17-associated chemokines in psoriasis vulgaris before and after ultraviolet B treatment. Acta Derm Venereol 2013; 93: 527-531.

https://doi.org/10.2340/00015555-1545 DOI: https://doi.org/10.2340/00015555-1545

Sigurdardottir G, Ekman AK, Stahle M, Bivik C, Enerback C. Systemic treatment and narrowband ultraviolet B differentially affect cardiovascular risk markers in psoriasis. J Am Acad Dermatol 2014; 70: 1067-1075.

https://doi.org/10.1016/j.jaad.2013.12.044 DOI: https://doi.org/10.1016/j.jaad.2013.12.044

Robinson-Cohen C, Zelnick LR, Hoofnagle AN, Lutsey PL, Burke G, Michos ED, et al. Associations of vitamin D-binding globulin and bioavailable vitamin D concentrations with coronary heart disease events: the multi-ethnic study of atherosclerosis (MESA). J Clin Endocrinol Metab 2017; 102: 3075-3084.

https://doi.org/10.1210/jc.2017-00296 DOI: https://doi.org/10.1210/jc.2017-00296

Lai YC, Yew YW. Psoriasis as an independent risk factor for cardiovascular disease: an epidemiologic analysis using a national database. J Cutan Med Surg 2016; 20: 327-333.

https://doi.org/10.1177/1203475415602842 DOI: https://doi.org/10.1177/1203475415602842

Boehncke WH. Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Front Immunol 2018; 9: 579.

https://doi.org/10.3389/fimmu.2018.00579 DOI: https://doi.org/10.3389/fimmu.2018.00579

Ghaly S, Murray K, Baird A, Martin K, Prosser R, Mill J, et al. High vitamin D-binding protein concentration, low albumin, and mode of remission predict relapse in Crohn's disease. Inflamm Bowel Dis 2016; 22: 2456-2464.

https://doi.org/10.1097/MIB.0000000000000894 DOI: https://doi.org/10.1097/MIB.0000000000000894

Srikanth P, Chun RF, Hewison M, Adams JS, Bouillon R, Vanderschueren D, et al. Associations of total and free 25OHD and 1,25(OH)2D with serum markers of inflammation in older men. Osteoporos Int 2016; 27: 2291-2300.

https://doi.org/10.1007/s00198-016-3537-3 DOI: https://doi.org/10.1007/s00198-016-3537-3

Augustine MV, Leonard MB, Thayu M, Baldassano RN, de Boer IH, Shults J, et al. Changes in vitamin D-related mineral metabolism after induction with anti-tumor necrosis factor-α therapy in Crohn's disease. J Clin Endocrinol Metab 2014; 99: E991-E998.

https://doi.org/10.1210/jc.2013-3846 DOI: https://doi.org/10.1210/jc.2013-3846

Adami G, Orsolini G, Adami S, Viapiana O, Idolazzi L, Gatti D, et al. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcif Tissue Int 2016; 99: 360-364.

https://doi.org/10.1007/s00223-016-0161-3 DOI: https://doi.org/10.1007/s00223-016-0161-3

Arques S. Human serum albumin in cardiovascular diseases. Eur J Intern Med 2018; 52: 8-12.

https://doi.org/10.1016/j.ejim.2018.04.014 DOI: https://doi.org/10.1016/j.ejim.2018.04.014

Kirmit A, Kader S, Aksoy M, Bal C, Nural C, Aslan O. Trace elements and oxidative stress status in patients with psoriasis. Postepy Dermatol Alergol 2020; 37: 333-339.

https://doi.org/10.5114/ada.2020.94265 DOI: https://doi.org/10.5114/ada.2020.94265

Mechie NC, Mavropoulou E, Ellenrieder V, Kunsch S, Cameron S, Amanzada A. Distinct association of serum vitamin D concentration with disease activity and trough levels of infliximab and adalimumab during inflammatory bowel disease treatment. Digestion 2020; 101: 761-770.

https://doi.org/10.1159/000502515 DOI: https://doi.org/10.1159/000502515

Hlavaty T, Krajcovicova A, Koller T, Toth J, Nevidanska M, Huorka M, et al. Higher vitamin D serum concentration increases health related quality of life in patients with inflammatory bowel diseases. World J Gastroenterol 2014; 20: 15787-15796.

https://doi.org/10.3748/wjg.v20.i42.15787 DOI: https://doi.org/10.3748/wjg.v20.i42.15787

Batista MC, Menegat FD, Ferreira CES, Faulhaber ACL, Campos D, Mangueira CLP. Analytical and clinical validation of the new Roche Elecsys Vitamin D Total II assay. Clin Chem Lab Med 2018; 56: e298-e301.

https://doi.org/10.1515/cclm-2018-0406 DOI: https://doi.org/10.1515/cclm-2018-0406

Downloads

Published

2021-11-24

How to Cite

Vandikas, M. S., Landin-Wilhelmsen, K., Polesie, S., Gillstedt, M., & Osmancevic, A. (2021). Impact of Etanercept on Vitamin D Status and Vitamin D-binding Protein in Bio-naïve Patients with Psoriasis. Acta Dermato-Venereologica, 101(11), adv00604. https://doi.org/10.2340/actadv.v101.359