Malassezia restricta-mediated Lipoperoxidation: A Novel Trigger in Dandruff


  • Roland Jourdain L’OREAL Research & Innovation – Advanced Research, 1 avenue Eugène Schueller, FR-93600 Aulnay sous Bois, France
  • Alain Moga Synelvia SAS, Labège, France
  • Prokopios Magiatis National and Kapodistrian University of Athens, Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Athens, greece
  • Maxime Fontanié VibioSphen SAS, Labège, France
  • Aristea Velegraki Bioiatriki SA, Athens, Greece
  • Chrysanthi Papadimou National and Kapodistrian University of Athens, Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Athens, Greece
  • Valérie Rahoul Synelvia SAS, Labège, France
  • Audrey Guéniche L'OREAL Research & Innovation, Chevilly-Larue, France
  • Tarun Chopra L'OREAL Research & Innovation, Singapore
  • George Gaitanis Department of Dermatology, Faculty of Medicine, University of Ioannina, Ioannina, Greece



barrier function, dandruff, lipoperoxidation, Malassezia restricta, malondialdehyde, sebum, squalene monohydroperoxide


Dandruff is a common scalp disorder with multiple microbial and host-related factors contributing to its aetiology, including alterations in scalp sebum. Despite existing evidence that the yeast Malassezia restricta plays a key role in the onset of dandruff, the interplay of these factors is poorly understood. Recently, squalene monohydroperoxide and malondialdehyde were established as biomarkers of dandruff-afflicted scalp, highlighting the role of sebum lipoperoxidation in the triggering and maintenance of dandruff, although its mechanism of action is unknown. The current study provides evidence that M. restricta mediates sebum peroxidation, leading to production of squalene monohydroperoxide and malondialdehyde. Furthermore, in vitro data show that these lipoperoxidation products act on epidermal cells and alter the skin barrier. These results support the role of Malassezia restricta-induced lipoperoxides as triggers of dandruff, which suggests that blocking their production could be a novel anti-dandruff treatment approach. 


Download data is not yet available.


Park M, Cho Y-J, Lee YW, Jung WH. Understanding the mechanism of action of the anti-dandruff agent zinc pyrithione against Malassezia restricta. Sci Rep 2018; 8: 12086. DOI:

Borda LJ, Wikramanayake TC. Seborrheic dermatitis and dandruff: a comprehensive review. J Clin Investig Dermatol 2015; 3: 10.13188/2373-1044.1000019. DOI:

Schwartz JR, Messenger AG, Tosti A, Todd G, Hordinsky M, Hay RJ, et al. A comprehensive pathophysiology of dandruff and seborrheic dermatitis - towards a more precise definition of scalp health. Acta Derm Venereol 2013; 93: 131-137. DOI:

Singh B, Haftek M, Harding CR. Retention of corneodesmosomes and increased expression of protease inhibitors in dandruff. Br J Dermatol 2014; 171: 760-770. DOI:

Turner GA, Hoptroff M, Harding CR. Stratum corneum dysfunction in dandruff. Int J Cosmet Sci 2014; 34: 298-306. DOI:

Cavusoglu N, Delattre C, Donovan M, Bourassa S, Droit A, El Rawadi C, et al. iTRAQ-based quantitative proteomics of stratum corneum of dandruff scalp reveals new insights into its aetiology and similarities with atopic dermatitis. Arch Dermatol Res 2016; 308: 631-642. DOI:

Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One 2013; 8: e58203. DOI:

Wang L, Clavaud C, Bar-Hen A, Cui M, Gao J, Liu Y, et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp Dermatol 2015; 24: 398-400. DOI:

Grimshaw SG, Smith AM, Arnold DS, Xu E, Hoptroff M, Murphy B. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS One 2019; 14: e0225796. DOI:

Jourdain R, Moga A, Vingler P, El Rawadi C, Pouradier F, Souverain L, et al. Exploration of scalp surface lipids reveals squalene peroxide as a potential actor in dandruff condition. Arch Dermatol Res 2016; 308: 153-163. DOI:

Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res 2008; 49: 271-281. DOI:

Ottaviani M, Alestas T, Flori E, Mastrofrancesco A, Zouboulis CC, Picardo M. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratinocytes: a possible role in acne vulgaris. J Invest Dermatol 2006; 126: 2430-2437. DOI:

Ohsawa K, Watanabe T, Matsukawa R, Yoshimura Y, Imaeda K. The possible role of squalene and its peroxide of the sebum in the occurrence of sunburn and protection from the damage caused by UV irradiation. J Toxicol Sci 1984; 9: 151-159. DOI:

Ozturk P, Arican O, Belge Kurutas E, Karakas T, Kabakci B. Oxidative stress in patients with scalp seborrheic dermatitis. Acta Dermatovenerol Croat 2013; 21: 80-85.

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438. DOI:

Bertino L, Guarneri F, Cannavò SP, Casciaro M, Pioggia G, Gangemi S. Oxidative stress and atopic dermatitis. Antioxidants (Basel) 2020; 9: 196. DOI:

Jourdain R, Moga A, Rahoul V, Fontanié M, Pavan L, Breton L. Malassezia restricta-mediated lipoperoxidation: a new player in dandruff origin. Poster 1026. Skin health and disease: immune, epithelial and microbiome crosstalk. Keystone Symposia, Hannover 2019.

Nakagawa K, Ibusuki D, Suzuki Y, Yamashita S, Higuchi O, Oikawa S, et al. Ion-trap tandem mass spectrometric analysis of squalene monohydroperoxide isomers in sunlight-exposed human skin. J Lipid Res 2007; 48: 2779-2787. DOI:

Nazzaro-Porro M, Passi S, Picardo M, Mercantini R, Breathnach AS. Lipoxygenase activity of Pityrosporum in vitro and in vivo. J Invest Dermatol 1986; 87: 108-112. DOI:

Strassnig S, Wenzl T, Lankmayr EP. Microwave-assisted derivatization of volatile carbonyl compounds with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine. J Chromatogr A 2000; 891: 267-273. DOI:

Pellevoisin C, Videau C, Briotet D, Grégoire C, Tornier C, Alonso A, et al. SkinEthic RHE for in vitro evaluation of skin irritation of medical device extracts. Toxicol In Vitro 2018; 50: 418-425. DOI:

Meloni M, Balzaretti S, Collard N, Desaint S, Laperdrix C. Reproducing the scalp microbiota community: co-colonization of a 3D reconstructed human epidermis with C. acnes and M. restricta. Int J Cosmet Sci 2021; 43: 235-245. DOI:

Frankart A, Malaisse J, De Vuyst E, Minner F, Lambert de Rouvroit C, Poumay Y. Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface. Exp Dermatol 2012; 21: 871-875. DOI:

Harris VM. Protein detection by Simple Western™ analysis. Methods Mol Biol 2015; 1312: 465-468. DOI:

De Luca C, Picardo M, Breathnach A, Passi S. Lipoperoxidase activity of Pityrosporum: characterisation of by-products and possible role in pityriasis versicolor. Exp Dermatol 1996; 5: 49-56. DOI:

Guého E, Midgley G, Guillot J. The genus Malassezia with description of four new species. Antonie van Leeuwenhoek 1996; 69: 337-355. DOI:

Ekanayake Mudiyanselage S, Hamburger M, Elsner P, Thiele JJ. Ultraviolet A induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol 2003; 120: 915-922. DOI:

De Galvez MV, Aguilera J, Bernabo JL, Sanchez-Roldan C, Herrera-Ceballos E. Human hair as a natural sun protection agent: a quantitative study. Photochem Photobiol 2015; 91: 966-970. DOI:

Ryu A, Arakane K, Koide C, Arai H, Nagano T. Squalene as a target molecule in skin hyperpigmentation caused by singlet oxygen. Biol Pharm Bull 2009; 32: 1504-1509. DOI:

Magiatis P, Pappas P, Gaitanis G, Mexia N, Melliou E, Galanou M, et al. Malassezia yeasts produce a collection of exceptionally potent activators of the Ah (dioxin) receptor detected in diseased human skin. J Invest Dermatol 2013; 133: 2023-2030. DOI:

Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021; 29: 1235-1248. DOI:

Gruber F, Marchetti-Deschmann M, Kremslehner C, Schosserer M. The skin epilipidome in stress, aging, and inflammation. Front Endocrinol 2021; 11: 607076. DOI:

De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm 2010; 2010: 321494. DOI:

Dennis KJ, Shibamoto T. Production of malonaldehyde from squalene, a major skin surface lipid, during UV-irradiation. Photochem Photobiol 1989; 49: 711-716. DOI:

Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc 2005; 10: 194-197. DOI:

James AG, Abraham KH, Cox DS, Moore AE, Pople JE. Metabolic analysis of the cutaneous fungi Malassezia globosa and M. restricta for insights on scalp condition and dandruff. Int J Cosmet Sci 2013; 35: 169-175. DOI:

Larson PJ, Chong D, Fleming E, Oh J. Challenges in developing a human model system for skin microbiome research. J Invest Dermatol 2021; 141: 228-231. DOI:

Additional Files



How to Cite

Jourdain, R., Moga, A., Magiatis, P., Fontanié, M., Velegraki, A., Papadimou, C., Rahoul, V., Guéniche, A., Chopra, T., & Gaitanis, G. (2023). Malassezia restricta-mediated Lipoperoxidation: A Novel Trigger in Dandruff. Acta Dermato-Venereologica, 103, adv00868.