Differentiation Between Benign and Malignant Pigmented Skin Tumours Using Bedside Diagnostic Imaging Technologies: A Pilot Study

Authors

  • Terese von Knorring Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 17, DK-2400 Copenhagen, Denmark
  • Niels Møller Israelsen
  • Vilde Ung
  • Julie L. Formann
  • Mikkel Jensen
  • Merete Hædersdal
  • Ole Bang
  • Gabriella Fredman
  • Mette Mogensen

DOI:

https://doi.org/10.2340/actadv.v101.571

Keywords:

diagnostic imaging, pigmented skin neoplasm, photoacoustic techniques, confocal microscopy, optical coherence tomography, angiography

Abstract

Rapid diagnosis of suspicious pigmented skin lesions is imperative; however, current bedside skin imaging technologies are either limited in penetration depth or resolution. Combining imaging methods is therefore highly relevant for skin cancer diagnostics. This pilot study evaluated the ability of optical coherence tomography, reflectance confocal microscopy, photo-acoustic imaging and high-frequency ultrasound to differentiate malignant from benign pigmented skin lesions. A total of 41 pigmented skin tumours were scanned prior to excision. Morphological features and blood vessel characteristics were analysed with reflectance confocal microscopy, optical coherence tomography, high-frequency ultrasound and photoacoustic imaging images, and the diagnostic accuracy was assessed. Three novel photoacoustic imaging features, 7 reflectance confocal microscopy features, and 2 optical coherence tomography features were detected that had a high correlation with malignancy; diagnostic accuracy > 71%. No significant features were found in high-frequency ultrasound. In conclusion, optical coherence tomography, reflectance confocal microscopy and photoacoustic imaging in combination enable image-guided bedside evaluation of suspicious pigmented skin tumours. Combining these advanced techniques may enable more efficient diagnosis of skin cancer.

Downloads

Download data is not yet available.

References

Giuffrida R, Conforti C, Di Meo N, Deinlein T, Guida S, Zalaudek I. Use of noninvasive imaging in the management of skin cancer. Curr Opin Oncol 2020; 32: 98-105.

https://doi.org/10.1097/CCO.0000000000000611

Malvehy J, Hauschild A, Curiel-Lewandrowski C, Mohr P, Hofmann-Wellenhof R, Motley R, et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multicentre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol 2014; 171: 1099-1107.

https://doi.org/10.1111/bjd.13121

Marghoob AA, Swindle LD, Moricz CZ, Sanchez Negron FA, Slue B, Halpern AC, et al. Instruments and new technologies for the in vivo diagnosis of melanoma. J Am Acad Dermatol 2003; 49: 777-797; quiz 798-779.

https://doi.org/10.1016/S0190-9622(03)02470-8

Mogensen M, Jemec GB. Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies. Dermatol Surg 2007; 33: 1158-1174.

https://doi.org/10.1097/00042728-200710000-00003

Schuh S, Kaestle R, Sattler E, Welzel J. Comparison of different optical coherence tomography devices for diagnosis of non-melanoma skin cancer. Skin Res Technol 2016; 22: 395-405.

https://doi.org/10.1111/srt.12277

Ulrich M. Optical coherence tomography for diagnosis of basal cell carcinoma: essentials and perspectives. Br J Dermatol 2016; 175: 1145-1146.

https://doi.org/10.1111/bjd.15137

Kadouch DJ, van Haersma de With ASE, Elshot YS, Peppelman M, Bekkenk MW, Wolkerstorfer A, et al. Interrater and intrarater agreement of confocal microscopy imaging in diagnosing and subtyping basal cell carcinoma. J Eur Acad Dermatol Venereol 2018; 32: 1278-1283.

https://doi.org/10.1111/jdv.14771

Bobadilla F, Wortsman X, Muñoz C, Segovia L, Espinoza M, Jemec GB. Pre-surgical high resolution ultrasound of facial basal cell carcinoma: correlation with histology. Cancer Imaging 2008; 8: 163-172.

https://doi.org/10.1102/1470-7330.2008.0026

Machet L, Belot V, Naouri M, Boka M, Mourtada Y, Giraudeau B, et al. Preoperative measurement of thickness of cutaneous melanoma using high-resolution 20 MHz ultrasound imaging: a monocenter prospective study and systematic review of the literature. Ultrasound Med Biol 2009; 35: 1411-1420.

https://doi.org/10.1016/j.ultrasmedbio.2009.03.018

Haroon A, Shafi S, Rao BK. Using Reflectance confocal microscopy in skin cancer diagnosis. Dermatol Clin 2017; 35: 457-464.

https://doi.org/10.1016/j.det.2017.06.007

Sahu A, Yélamos O, Iftimia N, Cordova M, Alessi-Fox C, Gill M, et al. Evaluation of a combined reflectance confocal microscopy-optical coherence tomography device for detection and depth assessment of basal cell carcinoma. JAMA Dermatol 2018; 154: 1175-1183.

https://doi.org/10.1001/jamadermatol.2018.2446

Alawi SA, Kuck M, Wahrlich C, Batz S, McKenzie G, Fluhr JW, et al. Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer - a practical approach. Exp Dermatol 2013; 22: 547-551.

https://doi.org/10.1111/exd.12196

Israelsen NM, Maria M, Mogensen M, Bojesen S, Jensen M, Haedersdal M, et al. The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs. Biomed Opt Express 2018; 9: 2240-2265.

https://doi.org/10.1364/BOE.9.002240

Themstrup L, De Carvalho N, Nielsen SM, Olsen J, Ciardo S, Schuh S, et al. In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography. Exp Dermatol 2018; 27: 156-165.

https://doi.org/10.1111/exd.13479

Themstrup L, Banzhaf CA, Mogensen M, Jemec GB. Optical coherence tomography imaging of non-melanoma skin cancer undergoing photodynamic therapy reveals subclinical residual lesions. Photodiagnosis Photodyn Ther 2014; 11: 7-12.

https://doi.org/10.1016/j.pdpdt.2013.11.003

De Carvalho N, Schuh S, Kindermann N, Kästle R, Holmes J, Welzel J. Optical coherence tomography for margin definition of basal cell carcinoma before micrographic surgery-recommendations regarding the marking and scanning technique. Skin Res Technol 2018; 24: 145-151.

https://doi.org/10.1111/srt.12407

Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB, Thrane L, et al. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol Surg 2009; 35: 965-972.

https://doi.org/10.1111/j.1524-4725.2009.01164.x

Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 2019; 16: 100144.

https://doi.org/10.1016/j.pacs.2019.100144

Chuah SY, Attia ABE, Ho CJH, Li X, Lee JS, Tan MWP, et al. Volumetric multispectral optoacoustic tomography for 3-dimensional reconstruction of skin tumors: a further evaluation with histopathologic correlation. J Invest Dermatol 2019; 139: 481-485.

https://doi.org/10.1016/j.jid.2018.08.014

Chen Z, Rank E, Meiburger KM, Sinz C, Hodul A, Zhang E, et al. Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging. Sci Rep 2017; 7: 17975.

https://doi.org/10.1038/s41598-017-18331-9

Breathnach A, Concannon E, Dorairaj JJ, Shaharan S, McGrath J, Jose J, et al. Preoperative measurement of cutaneous melanoma and nevi thickness with photoacoustic imaging. J Med Imaging (Bellingham) 2018; 5: 015004.

https://doi.org/10.1117/1.JMI.5.1.015004

Garbarino F, Migliorati S, Farnetani F, De Pace B, Ciardo S, Manfredini M, et al. Nodular skin lesions: correlation of reflectance confocal microscopy and optical coherence tomography features. J Eur Acad Dermatol Venereol 2020; 34: 101-111.

https://doi.org/10.1111/jdv.15953

Hoogedoorn L, Peppelman M, Blokx WA, van Erp PE, Gerritsen MJ. Prospective differentiation of clinically difficult to distinguish nodular basal cell carcinomas and intradermal nevi by non-invasive reflectance confocal microscopy: a case series study. J Eur Acad Dermatol Venereol 2015; 29: 330-336.

https://doi.org/10.1111/jdv.12548

Oliveira A, Zalaudek I, Arzberger E, Hofmann-Wellenhof R. Seborrhoeic keratosis imaging in high-definition optical coherence tomography, with dermoscopic and reflectance confocal microscopic correlation. J Eur Acad Dermatol

Venereol 2017; 31: e125-e127.

https://doi.org/10.1111/jdv.13874

Fredman G, Qiu Y, Ardigò M, Mogensen M. Skin tags imaged by reflectance confocal microscopy, optical coherence tomography and multispectral optoacoustic tomography at the bedside. Skin Res Technol 2021; 27: 324-331.

https://doi.org/10.1111/srt.12943

Guitera P, Pellacani G, Crotty KA, Scolyer RA, Li LX, Bassoli S, et al. The impact of in vivo reflectance confocal microscopy on the diagnostic accuracy of lentigo maligna and equivocal pigmented and nonpigmented macules of the face. J Invest Dermatol 2010; 130: 2080-2091.

https://doi.org/10.1038/jid.2010.84

Dinnes J, Deeks JJ, Saleh D, Chuchu N, Bayliss SE, Patel L, et al. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults. Cochrane Database Syst Rev 2018; 12: Cd013190.

https://doi.org/10.1002/14651858.CD013191

Rocha L, Vilain RE, Scolyer RA, Lo SN, Drummond M, Star P, et al. Confocal microscopy, dermoscopy, and histopathology features of atypical intraepidermal melanocytic proliferations associated with evolution to melanoma in situ. Int J Dermatol 2022; 61: 167-174.

https://doi.org/10.1111/ijd.15815

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995; 57: 289-300.

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Dinnes J, Deeks JJ, Chuchu N, Saleh D, Bayliss SE, Takwoingi Y, et al. Reflectance confocal microscopy for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst Rev 2018; 12: Cd013191.

https://doi.org/10.1002/14651858.CD013191

De Carvalho N, Welzel J, Schuh S, Themstrup L, Ulrich M, Jemec GBE, et al. The vascular morphology of melanoma is related to Breslow index: an in vivo study with dynamic optical coherence tomography. Exp Dermatol 2018; 27: 1280-1286.

https://doi.org/10.1111/exd.13783

von Knorring T, Mogensen M. Photoacoustic tomography for assessment and quantification of cutaneous and metastatic malignant melanoma - a systematic review. Photodiagnosis Photodyn Ther 2021; 33: 102095.

https://doi.org/10.1016/j.pdpdt.2020.102095

Welch HG, Mazer BL, Adamson AS. The rapid rise in cutaneous melanoma diagnoses. N Engl J Med 2021; 384: 72-79.

https://doi.org/10.1056/NEJMsb2019760

Guy GP, Jr., Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U.S., 2002-2006 and 2007-2011. Am J Prev Med 2015; 48: 183-187.

https://doi.org/10.1016/j.amepre.2014.08.036

Downloads

Published

2022-01-26

How to Cite

von Knorring, T., Israelsen, N. M., Ung, V., Formann, J. L., Jensen, M., Hædersdal, M., Bang, O., Fredman, G., & Mogensen, M. (2022). Differentiation Between Benign and Malignant Pigmented Skin Tumours Using Bedside Diagnostic Imaging Technologies: A Pilot Study. Acta Dermato-Venereologica, 102, adv00634. https://doi.org/10.2340/actadv.v101.571

Issue

Section

Articles

Categories