Patients with Darier Disease Exhibit Cognitive Impairment while Patients with Hailey-Hailey Disease Do Not: An Experimental, Matched Case-control Study
DOI:
https://doi.org/10.2340/00015555-3818Keywords:
Darier disease, Hailey-Hailey disease, cognition, cognitive impairment, SERCA2, SPCA1Abstract
Darier disease and Hailey-Hailey disease are severe, monogenetic dermatological disorders with mutations affecting all cells, making them liable to exhibit extra-dermal symptoms. The aim of this study is to assess broad cognitive function in individuals with these diseases, using an experimental, case-control set-up comparing cognition in patients with that in healthy controls matched for age, sex and level of education. Cognition was assessed with the Cambridge Neuropsychological Test Automated Battery. Patients with Darier disease (n = 29) performed significantly poorer on 5 of the 10 key cognitive measurements, while patients with Hailey-Hailey disease (n = 25) did not perform differently from controls. The main conclusion is that patients with Darier disease exhibit significant impairment in cognitive function, which reinforces the view that Darier disease should be regarded as a disorder affecting multiple organs, and should therefore be given medical consideration, and possibly treatment, as such.
Downloads
References
Burge SM, Wilkinson JD. Darier-White disease: a review of the clinical features in 163 patients. J Am Acad Dermatol 1992; 27: 40-50.
DOI: https://doi.org/10.1016/0190-9622(92)70154-8
Munro CS. The phenotype of Darier's disease: penetrance and expressivity in adults and children. Br J Dermatol 1992; 127: 126-130.
DOI: https://doi.org/10.1111/j.1365-2133.1992.tb08044.x
Cooper SM, Burge SM. Darier's disease: epidemiology, pathophysiology, and management. Am J Clin Dermatol 2003; 4: 97-105.
DOI: https://doi.org/10.2165/00128071-200304020-00003
Engin B, Kutlubay Z, Celik U, Serdaroglu S, Tuzun Y. Hailey-Hailey disease: a fold (intertriginous) dermatosis. Clin Dermatol 2015; 33: 452-455.
DOI: https://doi.org/10.1016/j.clindermatol.2015.04.006
Engin B, Kutlubay Z, Erkan E, Tüzün Y. Darier disease: a fold (intertriginous) dermatosis. Clin Dermatol 2015; 33: 448-451.
DOI: https://doi.org/10.1016/j.clindermatol.2015.04.009
Burge SM. Hailey-Hailey disease: the clinical features, response to treatment and prognosis. Br J Dermatol 1992; 126: 275-282.
DOI: https://doi.org/10.1111/j.1365-2133.1992.tb00658.x
Ben Lagha I, Ashack K, Khachemoune A. Hailey-Hailey disease: an update review with a focus on treatment data. Am J Clin Dermatol 2019.
DOI: https://doi.org/10.1007/s40257-019-00477-z
Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 1999; 21: 271-277.
DOI: https://doi.org/10.1038/6784
Nellen RG, Steijlen PM, van Steensel MA, Vreeburg M, Frank J, van Geel M, et al. Mendelian disorders of cornification caused by defects in intracellular calcium pumps: mutation update and database for variants in ATP2A2 and ATP2C1 associated with Darier disease and Hailey-Hailey disease. Hum Mutat 2017; 38: 343-356.
DOI: https://doi.org/10.1002/humu.23164
Sudbrak R, Brown J, Dobson-Stone C, Carter S, Ramser J, White J, et al. Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump. Hum Mol Genet 2000; 9: 1131-1140.
DOI: https://doi.org/10.1093/hmg/9.7.1131
Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 2000; 24: 61-65.
DOI: https://doi.org/10.1038/71701
Miyauchi Y, Daiho T, Yamasaki K, Takahashi H, Ishida-Yamamoto A, Danko S, et al. Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. J Biol Chem 2006; 281: 22882-22895.
DOI: https://doi.org/10.1074/jbc.M601966200
Deng H, Xiao H. The role of the ATP2C1 gene in Hailey-Hailey disease. Cell Mol Life Sci 2017; 74: 3687-3696.
DOI: https://doi.org/10.1007/s00018-017-2544-7
Pizzo P, Lissandron V, Capitanio P, Pozzan T. Ca(2+) signalling in the Golgi apparatus. Cell Calcium 2011; 50: 184-192.
DOI: https://doi.org/10.1016/j.ceca.2011.01.006
Vandecaetsbeek I, Trekels M, De Maeyer M, Ceulemans H, Lescrinier E, Raeymaekers L, et al. Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci U S A 2009; 106: 18533-18538.
DOI: https://doi.org/10.1073/pnas.0906797106
Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3: a004184.
DOI: https://doi.org/10.1101/cshperspect.a004184
Gunteski-Hamblin AM, Clarke DM, Shull GE. Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 1992; 31: 7600-7608.
DOI: https://doi.org/10.1021/bi00148a023
Vangheluwe P, Raeymaekers L, Dode L, Wuytack F. Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 2005; 38: 291-302.
DOI: https://doi.org/10.1016/j.ceca.2005.06.033
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A role for SERCA pumps in the neurobiology of neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol 2020; 1131: 131-161.
DOI: https://doi.org/10.1007/978-3-030-12457-1_6
Murín R, Verleysdonk S, Raeymaekers L, Kaplán P, Lehotský J. Distribution of secretory pathway Ca2+ ATPase (SPCA1) in neuronal and glial cell cultures. Cell Mol Neurobiol 2006; 26: 1355-1365.
DOI: https://doi.org/10.1007/s10571-006-9042-z
Sepúlveda MR, Vanoevelen J, Raeymaekers L, Mata AM, Wuytack F. Silencing the SPCA1 (secretory pathway Ca2+-ATPase isoform 1) impairs Ca2+ homeostasis in the Golgi and disturbs neural polarity. J Neurosci 2009; 29: 12174-12182.
DOI: https://doi.org/10.1523/JNEUROSCI.2014-09.2009
Brown JM, García-García MJ. Secretory pathway calcium ATPase 1 (SPCA1) controls mouse neural tube closure by regulating cytoskeletal dynamics. Development 2018; 145.
DOI: https://doi.org/10.1242/dev.170019
Li L, Hu GK. Pink1 protects cortical neurons from thapsigargin-induced oxidative stress and neuronal apoptosis. Biosci Rep 2015; 35.
DOI: https://doi.org/10.1042/BSR20140104
Yokota K, Sawamura D. Hailey-Hailey disease with affective disorder: report of a case with novel ATP2C1 gene mutation. J Dermatol Sci 2006; 43: 150-151.
DOI: https://doi.org/10.1016/j.jdermsci.2006.03.009
Körner J, Rietschel M, Nöthen MM, Wilk CM, Bauer R, Propping P, et al. Familial cosegregation of affective disorder and Hailey-Hailey disease. Br J Psychiatry 1993; 163: 109-110.
DOI: https://doi.org/10.1192/bjp.163.1.109
Wilk M, Rietschel M, Körner J, Möller HJ, Nöthen MM, Bauer R, et al. [Pemphigus chronicus benignus familiaris (Hailey-Hailey disease) and bipolar affective disease in 3 members of a family]. Hautarzt 1994; 45: 313-317.
DOI: https://doi.org/10.1007/s001050050075
Cederlof M, Bergen SE, Langstrom N, Larsson H, Boman M, Craddock N, et al. The association between Darier disease, bipolar disorder, and schizophrenia revisited: a population-based family study. Bipolar Disord 2015; 17: 340-344.
DOI: https://doi.org/10.1111/bdi.12257
Dodiuk-Gad RP, Cohen-Barak E, Khayat M, Milo H, Amariglio-Diskin L, Danial-Faran N, et al. Darier disease in Israel: combined evaluation of genetic and neuropsychiatric aspects. Br J Dermatol 2016; 174: 562-568.
DOI: https://doi.org/10.1111/bjd.14220
Gordon-Smith K, Jones LA, Burge SM, Munro CS, Tavadia S, Craddock N. The neuropsychiatric phenotype in Darier disease. Br J Dermatol 2010; 163: 515-522.
DOI: https://doi.org/10.1111/j.1365-2133.2010.09834.x
Gordon-Smith K, Green E, Grozeva D, Tavadia S, Craddock N, Jones L. Genotype-phenotype correlations in Darier disease: a focus on the neuropsychiatric phenotype. Am J Med Genet B Neuropsychiatr Genet 2018; 177: 717-726.
DOI: https://doi.org/10.1002/ajmg.b.32679
Ringpfeil F, Raus A, DiGiovanna JJ, Korge B, Harth W, Mazzanti C, et al. Darier disease - novel mutations in ATP2A2 and genotype-phenotype correlation. Exp Dermatol 2001; 10: 19-27.
DOI: https://doi.org/10.1034/j.1600-0625.2001.100103.x
Denicoff KD, Lehman ZA, Rubinow DR, Schmidt PJ, Peck GL. Suicidal ideation in Darier's disease. J Am Acad Dermatol 1990; 22: 196-198.
DOI: https://doi.org/10.1016/0190-9622(90)70022-A
Jacobsen NJ, Lyons I, Hoogendoorn B, Burge S, Kwok PY, O'Donovan MC, et al. ATP2A2 mutations in Darier's disease and their relationship to neuropsychiatric phenotypes. Hum Mol Genet 1999; 8: 1631-1636.
DOI: https://doi.org/10.1093/hmg/8.9.1631
Craddock N, Owen M, Burge S, Kurian B, Thomas P, McGuffin P. Familial cosegregation of major affective disorder and Darier's disease (keratosis follicularis). Br J Psychiatry 1994; 164: 355-358.
DOI: https://doi.org/10.1192/bjp.164.3.355
Cheour M, Zribi H, Abdelhak S, Drira S, Ben Osman A. Les manifestations neuropsychiatriques de la maladie de Darier: résultat préliminaire d'une étude epidémioclinique et génétique de huit familles. [Darier's disease: an evaluation of its neuropsychiatric component]. Encephale 2009; 35: 32-35.
DOI: https://doi.org/10.1016/j.encep.2007.09.009
Jones I, Jacobsen N, Green EK, Elvidge GP, Owen MJ, Craddock N. Evidence for familial cosegregation of major affective disorder and genetic markers flanking the gene for Darier's disease. Mol Psychiatry 2002; 7: 424-427.
DOI: https://doi.org/10.1038/sj.mp.4000989
Burge S. Darier's disease - the clinical features and pathogenesis. Clin Exp Dermatol 1994; 19: 193-205.
DOI: https://doi.org/10.1111/j.1365-2230.1994.tb01165.x
Cederlof M, Karlsson R, Larsson H, Almqvist C, Magnusson PK, Nordlind K, et al. Intellectual disability and cognitive ability in Darier disease: Swedish nation-wide study. Br J Dermatol 2015; 173: 155-158.
DOI: https://doi.org/10.1111/bjd.13740
Dodiuk-Gad R, Lerner M, Breznitz Z, Cohen-Barak E, Ziv M, Shani-Adir A, et al. Learning disabilities in Darier's disease patients. J Eur Acad Dermatol Venereol 2014; 28: 314-319.
DOI: https://doi.org/10.1111/jdv.12103
CANTAB®. p. [Cognitive assessment software]. Cambridge, UK: Cambridge Cognition; 2020.
Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 1994; 5: 266-281.
DOI: https://doi.org/10.1159/000106735
Haring L, Mõttus R, Koch K, Trei M, Maron E. Factorial validity, measurement equivalence and cognitive performance of the Cambridge Neuropsychological Test Automated Battery (CANTAB) between patients with first-episode psychosis and healthy volunteers. Psychol Med 2015; 45: 1919-1929.
DOI: https://doi.org/10.1017/S0033291714003018
Lowe C, Rabbitt P. Test/re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: theoretical and practical issues. Cambridge Neuropsychological Test Automated Battery. International Study of Post-Operative Cognitive Dysfunction. Neuropsychologia 1998; 36: 915-923.
DOI: https://doi.org/10.1016/S0028-3932(98)00036-0
CANTAB®. p. Core Cognition. [accessed 2020 Sept]. Available from: https://www.cambridgecognition.com/cantab/test-batteries/core-cognition/.
Svendsen IB, Albrectsen B. The prevalence of dyskeratosis follicularis (Darier's disease) in Denmark: an investigation of the heredity in 22 families. Acta Derm Venereol 1959; 39: 256-269.
Fairclough RJ, Lonie L, Van Baelen K, Haftek M, Munro CS, Burge SM, et al. Hailey-Hailey disease: identification of novel mutations in ATP2C1 and effect of missense mutation A528P on protein expression levels. J Invest Dermatol 2004; 123: 67-71.
DOI: https://doi.org/10.1111/j.0022-202X.2004.22713.x
Ahanian T, Curman P, Leong IUS, Brismar K, Bachar-Wikstrom E, Cederlof M, et al. Metabolic phenotype in Darier disease: a cross-sectional clinical study. Diabetol Metab Syndr 2020; 12: 12.
DOI: https://doi.org/10.1186/s13098-020-0520-0
Bachar-Wikstrom E, Curman P, Ahanian T, Leong IUS, Larsson H, Cederlof M, et al. Darier disease is associated with heart failure: a cross-sectional case-control and population based study. Sci Rep 2020; 10: 6886.
DOI: https://doi.org/10.1038/s41598-020-63832-9
Cederlöf M, Curman P, Ahanian T, Leong IUS, Brismar K, Bachar-Wikstrom E, et al. Darier disease is associated with type 1 diabetes: findings from a population-based cohort study. J Am Acad Dermatol 2019; 81: 1425-1426.
DOI: https://doi.org/10.1016/j.jaad.2019.05.087
Consortium SWGotPG. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421-427.
DOI: https://doi.org/10.1038/nature13595
Richard EA, Khlestova E, Nanu R, Lisman JE. Potential synergistic action of 19 schizophrenia risk genes in the thalamus. Schizophr Res 2017; 180: 64-69.
DOI: https://doi.org/10.1016/j.schres.2016.09.008
Hough C, Lu SJ, Davis CL, Chuang DM, Post RM. Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay. Biol Psychiatry 1999; 46: 247-255.
DOI: https://doi.org/10.1016/S0006-3223(98)00308-4
Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E, et al. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep 2018; 19: e44617.
DOI: https://doi.org/10.15252/embr.201744617
Goodwin J, Nath S, Engelborghs Y, Pountney DL. Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 2013; 62: 703-711.
DOI: https://doi.org/10.1016/j.neuint.2012.11.004
Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 2008; 133: 1149-1161.
DOI: https://doi.org/10.1016/j.cell.2008.05.048
Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C. Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 2009; 13: 3358-3369.
DOI: https://doi.org/10.1111/j.1582-4934.2009.00755.x
Nensa FM, Neumann MH, Schrötter A, Przyborski A, Mastalski T, Susdalzew S, et al. Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain. Mol Cell Proteomics 2014; 13: 475-488.
DOI: https://doi.org/10.1074/mcp.M113.029280
Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: A Gatekeeper of Neuronal Calcium Homeostasis in the Brain. Cell Mol Neurobiol 2018; 38: 981-994.
DOI: https://doi.org/10.1007/s10571-018-0583-8
Der G, Deary IJ. Reaction times match IQ for major causes of mortality: evidence from a population based prospective cohort study. Intelligence 2018; 69: 134-145.
DOI: https://doi.org/10.1016/j.intell.2018.05.005
Iwasa H, Kai I, Yoshida Y, Suzuki T, Kim H, Yoshida H. Information processing speed and 8-year mortality among community-dwelling elderly Japanese. J Epidemiol 2014; 24: 52-59.
DOI: https://doi.org/10.2188/jea.JE20120210
Gale CR, Harris A, Deary IJ. Reaction time and onset of psychological distress: the UK Health and Lifestyle Survey. J Epidemiol Community Health 2016; 70: 813-817.
DOI: https://doi.org/10.1136/jech-2015-206479
Der G, Deary IJ. The relationship between intelligence and reaction time varies with age: Results from three representative narrow-age age cohorts at 30, 50 and 69 years. Intelligence 2017; 64: 89-97.
Published
How to Cite
License
Copyright (c) 2021 Philip Curman, Johanna Bern, Linnea Sand, Martin Cederlöf, Etty Bachar-Wikström, Jakob D. Wikström
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.