Immunomodulator Galectin-9 is Increased in Blood and Skin of Patients with Bullous Pemphigoid
DOI:
https://doi.org/10.2340/00015555-3771Keywords:
autoimmune disease, bullous pemphigoid, galectin- 9, eosinophilAbstract
Massive recruitment of eosinophils into the dermis is a hallmark of bullous pemphigoid pathogenesis. Identifying the chemoattractant(s) guiding eosinophils into the skin in bullous pemphigoid is a prerequisite to therapeutic targeting of eosinophil recruitment. Galectin -9 is a potent chemoattractant for eosinophils, but its potential role in bullous pemphigoid is unknown. The aim of this study was to determine the expression levels of galectin-9 in serum and skin of patients with bullous pemphigoid. Galectin-9 levels were significantly elevated in serum of patients with bullous pemphigoid compared with age- and sex-matched controls, but did not correlate with disease activity assessed with the Bullous Pemphigoid Disease Area Index. Galectin-9 expression was also increased in lesional skin of patients with bullous pemphigoid, and was expressed predominantly in eosinophils, neutrophils and keratinocytes. In conclusion, these results support the notion that galectin-9 may play a role in the pathogenesis of bullous pemphigoid.
Downloads
References
Sadik CD, Schmidt E, Zillikens D, Hashimoto T. Recent progresses and perspectives in autoimmune bullous diseases. J Allergy Clin Immunol 2020; 145: 1145-1147.
DOI: https://doi.org/10.1016/j.jaci.2020.02.020
Sadik CD, Schmidt E. Resolution in bullous pemphigoid. Semin Immunopathol 2019; 41: 645-654.
DOI: https://doi.org/10.1007/s00281-019-00759-y
Amber KT, Valdebran M, Kridin K, Grando SA. The role of eosinophils in bullous pemphigoid: a developing model of eosinophil pathogenicity in mucocutaneous disease. Front Med (Lausanne) 2018; 5: 201.
DOI: https://doi.org/10.3389/fmed.2018.00201
Giusti D, Gatouillat G, Le Jan S, Plee J, Bernard P, Antonicelli F, et al. Eosinophil cationic protein (ECP), a predictive marker of bullous pemphigoid severity and outcome. Sci Rep 2017; 7: 4833.
DOI: https://doi.org/10.1038/s41598-017-04687-5
Feliciani C, Toto P, Mohammad Pour S, Coscione G, Amerio P, Amerio P. A Th2-like cytokine response is involved in bullous pemphigoid. the role of IL-4 and IL-5 in the pathogenesis of the disease. Int J Immunopathol Pharmacol 1999; 12: 55-61.
DOI: https://doi.org/10.1177/205873929901200202
Gounni Abdelilah S, Wellemans V, Agouli M, Guenounou M, Hamid Q, Beck LA, et al. Increased expression of Th2-associated chemokines in bullous pemphigoid disease. Role of eosinophils in the production and release of these chemokines. Clin Immunol 2006; 120: 220-231.
DOI: https://doi.org/10.1016/j.clim.2006.03.014
Chakievska L, Holtsche MM, Kunstner A, Goletz S, Petersen BS, Thaci D, et al. IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun 2019; 96: 104-112.
DOI: https://doi.org/10.1016/j.jaut.2018.09.003
Norling LV, Perretti M, Cooper D. Endogenous galectins and the control of the host inflammatory response. J Endocrinol 2009; 201: 169-184.
DOI: https://doi.org/10.1677/JOE-08-0512
Niki T, Tsutsui S, Hirose S, Aradono S, Sugimoto Y, Takeshita K, et al. Galectin-9 is a high affinity IgE-binding lectin with anti-allergic effect by blocking IgE-antigen complex formation. J Biol Chem 2009; 284: 32344-32352.
DOI: https://doi.org/10.1074/jbc.M109.035196
Matsumoto R, Hirashima M, Kita H, Gleich GJ. Biological activities of ecalectin: a novel eosinophil-activating factor. J Immunol 2002; 168: 1961-1967.
DOI: https://doi.org/10.4049/jimmunol.168.4.1961
Matsumoto R, Matsumoto H, Seki M, Hata M, Asano Y, Kanegasaki S, et al. Human ecalectin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes. J Biol Chem 1998; 273: 16976-16984.
DOI: https://doi.org/10.1074/jbc.273.27.16976
Saita N, Goto E, Yamamoto T, Cho I, Tsumori K, Kohrogi H, et al. Association of galectin-9 with eosinophil apoptosis. Int Arch Allergy Immunol 2002; 128: 42-50.
DOI: https://doi.org/10.1159/000058002
Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, Watanabe K, et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 2008; 127: 78-88.
DOI: https://doi.org/10.1016/j.clim.2008.01.006
Fernandez-Santamaria R, Palomares F, Salas M, Dona I, Bogas G, Ariza A, et al. Expression of the Tim3-galectin-9 axis is altered in drug-induced maculopapular exanthema. Allergy 2019; 74: 1769-1779.
DOI: https://doi.org/10.1111/all.13847
Chihara M, Kurita M, Yoshihara Y, Asahina A, Yanaba K. Clinical significance of serum galectin-9 and soluble CD155 levels in patients with systemic sclerosis. J Immunol Res 2018; 2018: 9473243.
DOI: https://doi.org/10.1155/2018/9473243
Katoh S, Nobumoto A, Matsumoto N, Matsumoto K, Ehara N, Niki T, et al. Involvement of galectin-9 in lung eosinophilia in patients with eosinophilic pneumonia. Int Arch Allergy Immunol 2010; 153: 294-302.
DOI: https://doi.org/10.1159/000314371
Sziksz E, Kozma GT, Pallinger E, Komlosi ZI, Adori C, Kovacs L, et al. Galectin-9 in allergic airway inflammation and hyper-responsiveness in mice. Int Arch Allergy Immunol 2010; 151: 308-317.
DOI: https://doi.org/10.1159/000250439
Nakajima R, Miyagaki T, Oka T, Nakao M, Kawaguchi M, Suga H, et al. Elevated serum galectin-9 levels in patients with atopic dermatitis. J Dermatol 2015; 42: 723-726.
DOI: https://doi.org/10.1111/1346-8138.12884
Wiersma VR, Clarke A, Pouwels SD, Perry E, Abdullah TM, Kelly C, et al. Galectin-9 is a possible promoter of immunopathology in rheumatoid arthritis by activation of peptidyl arginine deiminase 4 (PAD-4) in granulocytes. Int J Mol Sci 2019; 20: 4046.
DOI: https://doi.org/10.3390/ijms20164046
Wienke J, Bellutti Enders F, Lim J, Mertens JS, van den Hoogen LL, Wijngaarde CA, et al. Galectin-9 and CXCL10 as biomarkers for disease activity in juvenile dermatomyositis: a longitudinal cohort study and multicohort validation. Arthritis Rheumatol 2019; 71: 1377-1390.
DOI: https://doi.org/10.1002/art.40881
van den Hoogen LL, van Roon JAG, Mertens JS, Wienke J, Lopes AP, de Jager W, et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis 2018; 77: 1810-1814.
DOI: https://doi.org/10.1136/annrheumdis-2018-213497
Matsuoka N, Kozuru H, Koga T, Abiru S, Yamasaki K, Komori A, et al. Galectin-9 in autoimmune hepatitis: Correlation between serum levels of galectin-9 and M2BPGi in patients with autoimmune hepatitis. Medicine 2019; 98: e16924.
DOI: https://doi.org/10.1097/MD.0000000000016924
Panda SK, Facchinetti V, Voynova E, Hanabuchi S, Karnell JL, Hanna RN, et al. Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models. J Clin Invest 2018; 128: 1873-1887.
DOI: https://doi.org/10.1172/JCI97333
Arikawa T, Watanabe K, Seki M, Matsukawa A, Oomizu S, Sakata KM, et al. Galectin-9 ameliorates immune complex-induced arthritis by regulating Fc gamma R expression on macrophages. Clin Immunol 2009; 133: 382-392.
DOI: https://doi.org/10.1016/j.clim.2009.09.004
Zeggar S, Watanabe KS, Teshigawara S, Hiramatsu S, Katsuyama T, Katsuyama E, et al. Role of Lgals9 deficiency in attenuating nephritis and arthritis in BALB/c mice in a pristane-induced lupus model. Arthritis Rheumatol 2018; 70: 1089-1101.
DOI: https://doi.org/10.1002/art.40467
Sezin T, Murthy S, Attah C, Seutter M, Holtsche MM, Hammers CM, et al. Dual inhibition of complement factor 5 and leukotriene B4 synergistically suppresses murine pemphigoid disease. JCI Insight 2019; 4: e128239.
DOI: https://doi.org/10.1172/jci.insight.128239
Simon D, Yousefi S, Cazzaniga S, Burgler C, Radonjic S, Houriet C, et al. Mepolizumab failed to affect bullous pemphigoid: a randomized, placebo-controlled, double-blind phase 2 pilot study. Allergy 2020; 75: 669-672.
DOI: https://doi.org/10.1111/all.13950
Lee J, Werth VP, Hall RP, 3rd, Eming R, Fairley JA, Fajgenbaum DC, et al. Perspective from the 5th International Pemphigus and Pemphigoid Foundation Scientific Conference. Front Med (Lausanne) 2018; 5: 306.
DOI: https://doi.org/10.3389/fmed.2018.00306
Diny NL, Rose NR, Cihakova D. Eosinophils in autoimmune diseases. Front Immunol 2017; 8: 484.
DOI: https://doi.org/10.3389/fimmu.2017.00484
Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nature Rev Immunol 2013; 13: 9-22.
DOI: https://doi.org/10.1038/nri3341
Sadik CD, Luster AD. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J Leukoc Biol 2012; 91: 207-215.
DOI: https://doi.org/10.1189/jlb.0811402
Sadik CD, Kim ND, Luster AD. Neutrophils cascading their way to inflammation. Trends Immunol 2011; 32: 452-460.
DOI: https://doi.org/10.1016/j.it.2011.06.008
Enninga EA, Nevala WK, Holtan SG, Leontovich AA, Markovic SN. Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res 2016; 26: 429-441.
DOI: https://doi.org/10.1097/CMR.0000000000000281
Hirose M, Kasprick A, Beltsiou F, Dieckhoff Schulze K, Schulze FS, Samavedam UK, et al. Reduced skin blistering in experimental epidermolysis bullosa acquisita after anti-TNF treatment. Molec Med 2017; 22: 918-926.
DOI: https://doi.org/10.2119/molmed.2015.00206
Schmidt E, Bastian B, Dummer R, Tony HP, Brocker EB, Zillikens D. Detection of elevated levels of IL-4, IL-6, and IL-10 in blister fluid of bullous pemphigoid. Arch Dermatol Res 1996; 288: 353-357.
DOI: https://doi.org/10.1007/BF02507102
Chen R, Fairley JA, Zhao ML, Giudice GJ, Zillikens D, Diaz LA, et al. Macrophages, but not T and B lymphocytes, are critical for subepidermal blister formation in experimental bullous pemphigoid: macrophage-mediated neutrophil infiltration depends on mast cell activation. J Immunol 2002; 169: 3987-3992.
Published
How to Cite
License
Copyright (c) 2021 Jasper Pruessmann, Wiebke Pruessmann, Maike M. Holtsche, Beke Linnemann, Christoph M. Hammers, Nina van Beek, Detlef Zillikens, Enno Schmidt, Christian D. Sadik
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.