Biological properties versus solubility of endodontic sealers and cements

Authors

  • Inge Fristad Department of Clinical Dentistry, University of Bergen, Bergen, Norway
  • Sivakami Haug Department of Clinical Dentistry, University of Bergen, Bergen, Norway
  • Asgeir Bårdsen Department of Clinical Dentistry, University of Bergen, Bergen, Norway

DOI:

https://doi.org/10.2340/biid.v11.40863

Keywords:

Endodontics, biomaterials, biocompatibility, toxicity

Abstract

Endodontic sealers and cements used in root canal treatment have different compositions and properties. Common to all materials is that their primary goal is to fill gaps and voids, making a permanent seal of the root canal system. Furthermore, aspects such as antibacterial properties, cytotoxicity, setting time, solubility and biocompatibility are also crucial and ought to be considered. Over the years, a shift in the view on the importance of these aspects has ocurred. Whereas the antibacterial properties were considered important when the technical factors in endodontics were less developed, the sealing ability and biocompatibility have later been considered the most critical factors. The introduction of tricalcium silicate cements and sealers has led to a renewed interest in material properties, as these cements seem to have good sealing ability and at the same time combine favourable antimicrobial effects with excellent biocompatibility. This review discusses how the various properties of root canal sealers and cements may conflict with the primary aim of providing a permanent seal of the root canal system. 

Downloads

Download data is not yet available.

References

Möller AJ, Fabricius L, Dahlen G, Sundqvist G, Happonen RP. Apical periodontitis development and bacterial response to endodontic treatment. Experimental root canal infections in monkeys with selected bacterial strains. Eur J Oral Sci. 2004;112(3):207–15. https://doi.org/10.1111/j.1600-0722.2004.00135.x DOI: https://doi.org/10.1111/j.1600-0722.2004.00135.x

Fabricius L, Dahlen G, Sundqvist G, Happonen RP, Moller AJ. Influence of residual bacteria on periapical tissue healing after chemomechanical treatment and root filling of experimentally infected monkey teeth. Eur J Oral Sci. 2006;114(4):278–85. https://doi.org/10.1111/j.1600-0722.2006.00380.x DOI: https://doi.org/10.1111/j.1600-0722.2006.00380.x

Sjögren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16(10):498–504. https://doi.org/10.1016/S0099-2399(07)80180-4 DOI: https://doi.org/10.1016/S0099-2399(07)80180-4

Tavares PB, Bonte E, Boukpessi T, Siqueira JF, Jr., Lasfargues JJ. Prevalence of apical periodontitis in root canal-treated teeth from an urban French population: influence of the quality of root canal fillings and coronal restorations. J Endod. 2009;35(6):810–3. https://doi.org/10.1016/j.joen.2009.03.048 DOI: https://doi.org/10.1016/j.joen.2009.03.048

Winkler A, Adler P, Ludwig J, et al. Endodontic outcome of root canal treatment using different obturation techniques: a clinical study. Dent J (Basel). 2023;21;11(8):200. https://doi.org/10.3390/dj11080200 DOI: https://doi.org/10.3390/dj11080200

Nair PN. On the causes of persistent apical periodontitis: a review. Int Endod J. 2006;39(4):249–81. https://doi.org/10.1111/j.1365-2591.2006.01099.x DOI: https://doi.org/10.1111/j.1365-2591.2006.01099.x

Lodiene G, Morisbak E, Bruzell E, Orstavik D. Toxicity evaluation of root canal sealers in vitro. Int Endod J. 2008;41(1):72–7. https://doi.org/10.1111/j.1365-2591.2007.01321.x DOI: https://doi.org/10.1111/j.1365-2591.2007.01321.x

Ferracane JL, Sidhu SK, Melo MAS, Yeo IL, Diogenes A, Darvell BW. Bioactive dental materials – developing, promising, confusing. JFS. 2023;2:100022. https://doi.org/10.1016/j.jfscie.2023.100022 DOI: https://doi.org/10.1016/j.jfscie.2023.100022

Sanz JL, Guerrero-Girones J, Pecci-Lloret MP, Pecci-Lloret MR, Melo M. Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: a systematic review of in vitro studies. Int Endod J. 2021;54(11):2025–43. https://doi.org/10.1111/iej.13600 DOI: https://doi.org/10.1111/iej.13600

Maru V, Dixit U, Patil RSB, Parekh R. Cytotoxicity and bioactivity of mineral trioxide aggregate and bioactive endodontic type cements: a systematic review. Int J Clin Pediatr Dent. 2021;14(1):30–9. https://doi.org/10.5005/jp-journals-10005-1880 DOI: https://doi.org/10.5005/jp-journals-10005-1880

Washio A, Morotomi T, Yoshii S, Kitamura C. Bioactive glass-based endodontic sealer as a promising root canal filling material without semisolid core materials. Materials (Basel). 2019;12(23):3967. https://doi.org/10.3390/ma12233967 DOI: https://doi.org/10.3390/ma12233967

Ardila CM, Bedoya-Garcia JA, Gonzalez-Arroyave D. Antimicrobial resistance in patients with endodontic infections: a systematic scoping review of observational studies. Aust Endod J. 2023;49(2):386–95. https://doi.org/10.1111/aej.12680 DOI: https://doi.org/10.1111/aej.12680

Ørstavik D. Antibacterial properties of endodontic materials. Int Endod J. 1988;21(2):161–9. https://doi.org/10.1111/j.1365-2591.1988.tb00970.x DOI: https://doi.org/10.1111/j.1365-2591.1988.tb00970.x

Sargenti A. Is N2 an acceptable method of treatment. Transactions of the 5th International Conference in Endodontic. Philadelphia: University of Philadelpia; 1973.

Grossman L. Antimicrobial effect of root canal cements. J Endod. 1980;6(6):594–7. https://doi.org/10.1016/S0099-2399(80)80019-7 DOI: https://doi.org/10.1016/S0099-2399(80)80019-7

Spångberg LSW. Endodontic filling materials. In: Smith DC, Williams DF, eds. Biocompatibility of dental materials. Vol. 3. Boca Raton, FL: CRC Press; 1982. p. 223–57.

Faria-Junior NB, Tanomaru-Filho M, Berbert FL, Guerreiro-Tanomaru JM. Antibiofilm activity, pH and solubility of endodontic sealers. Int Endod J. 2013;46(8):755–62. https://doi.org/10.1111/iej.12055 DOI: https://doi.org/10.1111/iej.12055

Ersahan S, Aydin C. Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol Scand. 2013;71(3–4):857–62. https://doi.org/10.3109/00016357.2012.734410 DOI: https://doi.org/10.3109/00016357.2012.734410

Eldeniz AU, Erdemir A, Kurtoglu F, Esener T. Evaluation of pH and calcium ion release of Acroseal sealer in comparison with Apexit and Sealapex sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(3):e86–91. https://doi.org/10.1016/j.tripleo.2006.10.018 DOI: https://doi.org/10.1016/j.tripleo.2006.10.018

Dentsply Sirona. IRM – direction for use. [cited 2024 Feb 04]. Available from: https://www.dentsplysirona.com/en-ca/shop/irm-zoe-intermediate-restorative-material.html

Huang FM, Tai KW, Chou MY, Chang YC. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int Endod J. 2002;35(2):153–8. https://doi.org/10.1046/j.1365-2591.2002.00459.x DOI: https://doi.org/10.1046/j.1365-2591.2002.00459.x

AlShwaimi E, Bogari D, Ajaj R, Al-Shahrani S, Almas K, Majeed A. In vitro antimicrobial effectiveness of root canal sealers against Enterococcus faecalis: a systematic review. J Endod. 2016;42(11):1588–97. DOI: https://doi.org/10.1016/j.joen.2016.08.001

Ørstavik D. Antibacterial properties of root canal sealers, cements and pastes. Int Endod J. 1981;14(2):125–33. https://doi.org/10.1111/j.1365-2591.1981.tb01073.x DOI: https://doi.org/10.1111/j.1365-2591.1981.tb01073.x

Araki K, Suda H, Barbosa SV, Spangberg LS. Reduced cytotoxicity of a root canal sealer through eugenol substitution. J Endod. 1993;19(11):554–7. DOI: https://doi.org/10.1016/S0099-2399(06)81285-9

Zander HA. Reactions of pulp to calcium hydroxide. J Dent Res. 1939;18:373–9. https://doi.org/10.1177/00220345390180040601 DOI: https://doi.org/10.1177/00220345390180040601

Fisher FJ, McCabe JF. Calcium hydroxide base materials. An investigation into the relationship between chemical structure and antibacterial properties. Br Dent J. 1978;144(11):341–4. DOI: https://doi.org/10.1038/sj.bdj.4804093

Schroder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res. 1985;64 Spec No:541–8. https://doi.org/10.1177/002203458506400407 DOI: https://doi.org/10.1177/002203458506400407

Ozalp N, Saroglu I, Sonmez H. Evaluation of various root canal filling materials in primary molar pulpectomies: an in vivo study. Am J Dent. 2005;18(6):347–50.

Sari S, Okte Z. Success rate of Sealapex in root canal treatment for primary teeth: 3-year follow-up. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(4):e93–6. https://doi.org/10.1016/j.tripleo.2007.12.014 DOI: https://doi.org/10.1016/j.tripleo.2007.12.014

Tronstad L, Barnett F, Flax M. Solubility and biocompatibility of calcium hydroxide-containing root canal sealers. Endod Dent Traumatol. 1988;4(4):152–9. https://doi.org/10.1111/j.1600-9657.1988.tb00314.x DOI: https://doi.org/10.1111/j.1600-9657.1988.tb00314.x

McMichen FR, Pearson G, Rahbaran S, Gulabivala K. A comparative study of selected physical properties of five root-canal sealers. Int Endod J. 2003;36(9):629–35. https://doi.org/10.1046/j.1365-2591.2003.00701.x DOI: https://doi.org/10.1046/j.1365-2591.2003.00701.x

da Silva LA, Leonardo MR, da Silva RS, Assed S, Guimaraes LF. Calcium hydroxide root canal sealers: evaluation of pH, calcium ion concentration and conductivity. Int Endod J. 1997;30(3):205–9. DOI: https://doi.org/10.1046/j.1365-2591.1997.00079.x

Heling I, Chandler NP. The antimicrobial effect within dentinal tubules of four root canal sealers. J Endod. 1996;22(5):257–9. DOI: https://doi.org/10.1016/S0099-2399(06)80144-5

Saleh IM, Ruyter IE, Haapasalo M, Orstavik D. Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. Int Endod J. 2004;37(3):193–8. https://doi.org/10.1111/j.0143-2885.2004.00785.x DOI: https://doi.org/10.1111/j.0143-2885.2004.00785.x

Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: a review article. J Clin Exp Dent. 2017;9(10):e1249–55. DOI: https://doi.org/10.4317/jced.54103

Stewart I, Chandker NP. Clinical application of glass ionomer cements in endodontics: case reports. Int Endod J. 1990;23:172–8. https://doi.org/10.1111/j.1365-2591.1990.tb00095.x DOI: https://doi.org/10.1111/j.1365-2591.1990.tb00095.x

Ray H, Seltzer S. A new glass ionomer root canal sealer. J Endod. 1991;17(12):598–603. https://doi.org/10.1016/S0099-2399(06)81832-7 DOI: https://doi.org/10.1016/S0099-2399(06)81832-7

Seppä L, Forss H, Ogaard B. The effect of fluoride application on fluoride release and the antibacterial action of glass ionomers. J Dent Res. 1993;72(9):1310–4. DOI: https://doi.org/10.1177/00220345930720090901

Palenik CJ, Behnen MJ, Setcos JC, Miller CH. Inhibition of microbial adherence and growth by various glass ionomers in vitro. Dent Mater. 1992;8(1):16–20. https://doi.org/10.1016/0109-5641(92)90047-G DOI: https://doi.org/10.1016/0109-5641(92)90047-G

de Rosas MI, Chan DCN. Effect of zink and fluoride released from glass ionomer on bacterial growth. J Dent Res. 1996;75:68.

Kolokuris I, Beltes P, Economides N, Vlemmas I. Experimental study of the biocompatibility of a new glass-ionomer root canal sealer (Ketac-Endo). J Endod. 1996;22(8):395–8. https://doi.org/10.1016/S0099-2399(96)80237-8 DOI: https://doi.org/10.1016/S0099-2399(96)80237-8

Jonck LM, Grobbelaar CJ. Ionos bone cement (glass-ionomer): an experimental and clinical evaluation in joint replacement. Clin Mater. 1990;6(4):323–59. DOI: https://doi.org/10.1016/0267-6605(90)90052-W

Snyder WR, Hoover J, Khoury R, Farach-Carson MC. Effect of agents used in perforation repair on osteoblastic cells. J Endod. 1997;23(3):158–61. https://doi.org/10.1016/S0099-2399(97)80266-X DOI: https://doi.org/10.1016/S0099-2399(97)80266-X

Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. J Dent Res. 1998;77(12):2012–9. DOI: https://doi.org/10.1177/00220345980770121001

Miyaji H, Mayumi K, Miyata S, et al. Comparative biological assessments of endodontic root canal sealer containing surface pre-reacted glass-ionomer (S-PRG) filler or silica filler. Dent Mater J. 2020;39(2):287–94. https://doi.org/10.4012/dmj.2019-029 DOI: https://doi.org/10.4012/dmj.2019-029

Friedman S, Lost C, Zarrabian M, Trope M. Evaluation of success and failure after endodontic therapy using a glass ionomer cement sealer. J Endod. 1995;21(7):384–90. DOI: https://doi.org/10.1016/S0099-2399(06)80976-3

McComb D, Smith DC. Comparison of physical properties of polycarboxylate-based and conventional root canal sealers. J Endod. 1976;2(8):228–35. https://doi.org/10.1016/S0099-2399(76)80162-8 DOI: https://doi.org/10.1016/S0099-2399(76)80162-8

Yates JL, Hembree JH, Jr. Microleakage of three root canal cements: one-year study. J Endod. 1980;6(6):591–3. DOI: https://doi.org/10.1016/S0099-2399(80)80018-5

Leonardo MR, da Silva LA, Almeida WA, Utrilla LS. Tissue response to an epoxy resin-based root canal sealer. Endod Dent Traumatol. 1999;15(1):28–32. https://doi.org/10.1111/j.1600-9657.1999.tb00745.x DOI: https://doi.org/10.1111/j.1600-9657.1999.tb00745.x

Mamootil K, Messer HH. Penetration of dentinal tubules by endodontic sealer cements in extracted teeth and in vivo. Int Endod J. 2007;40(11):873–81. DOI: https://doi.org/10.1111/j.1365-2591.2007.01307.x

Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol. 1996;12(4):179–84. https://doi.org/10.1111/j.1600-9657.1996.tb00511.x DOI: https://doi.org/10.1111/j.1600-9657.1996.tb00511.x

Nawal RR, Parande M, Sehgal R, Naik A, Rao NR. A comparative evaluation of antimicrobial efficacy and flow properties for Epiphany, Guttaflow and AH-Plus sealer. Int Endod J. 2011;44(4):307–13. DOI: https://doi.org/10.1111/j.1365-2591.2010.01829.x

Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod. 2009;35(7):1051–5. DOI: https://doi.org/10.1016/j.joen.2009.04.022

Bodrumlu E, Semiz M. Antibacterial activity of a new endodontic sealer against Enterococcus faecalis. J Can Dent Assoc. 2006;72(7):637.

Nakamura H, Sakakibara F, Matsumoto Y, et al. Study on the cytotoxicity of root canal filling materials. J Endod. 1986;12(4):156–60. https://doi.org/10.1016/S0099-2399(86)80054-1 DOI: https://doi.org/10.1016/S0099-2399(86)80054-1

Cobankara FK, Adanir N, Belli S, Pashley DH. A quantitative evaluation of apical leakage of four root-canal sealers. Int Endod J. 2002;35(12):979–84. DOI: https://doi.org/10.1046/j.1365-2591.2002.00577.x

Yesilsoy C, Feigal RJ. Effects of endodontic materials on cell viability across standard pore size filters. J Endod. 1985;11(9):401–7. https://doi.org/10.1016/S0099-2399(85)80029-7 DOI: https://doi.org/10.1016/S0099-2399(85)80029-7

Ørstavik D. Materials used for root canal obturation: technical, biological and clinical teting. Endod Topics. 2005;12:25–38. DOI: https://doi.org/10.1111/j.1601-1546.2005.00197.x

Huumonen S, Lenander-Lumikari M, Sigurdsson A, Orstavik D. Healing of apical periodontitis after endodontic treatment: a comparison between a silicone-based and a zinc oxide-eugenol-based sealer. Int Endod J. 2003;36(4):296–301. https://doi.org/10.1046/j.1365-2591.2003.00651.x DOI: https://doi.org/10.1046/j.1365-2591.2003.00651.x

Bouillaguet S, Wataha JC, Tay FR, Brackett MG, Lockwood PE. Initial in vitro biological response to contemporary endodontic sealers. J Endod. 2006;32(10):989–92. https://doi.org/10.1016/j.joen.2006.05.006 DOI: https://doi.org/10.1016/j.joen.2006.05.006

Ruiz-Linares M, Baca P, Arias-Moliz MT, Ternero FJ, Rodriguez J, Ferrer-Luque CM. Antibacterial and antibiofilm activity over time of GuttaFlow Bioseal and AH Plus. Dent Mater J. 2019;38(5):701–6. https://doi.org/10.4012/dmj.2018-090 DOI: https://doi.org/10.4012/dmj.2018-090

Patri G, Agrawal P, Anushree N, Arora S, Kunjappu JJ, Shamsuddin SV. A scanning electron microscope analysis of sealing potential and marginal adaptation of different root canal sealers to dentin: an in vitro study. J Contemp Dent Pract. 2020;21(1):73–7. https://doi.org/10.5005/jp-journals-10024-2733 DOI: https://doi.org/10.5005/jp-journals-10024-2733

Tay FR, Loushine RJ, Monticelli F, et al. Effectiveness of resin-coated gutta-percha cones and a dual-cured, hydrophilic methacrylate resin-based sealer in obturating root canals. J Endod. 2005;31(9):659–64. DOI: https://doi.org/10.1097/01.don.0000171942.69081.53

Zmener O, Banegas G, Pameijer CH. Bone tissue response to a methacrylate-based endodontic sealer: a histological and histometric study. J Endod. 2005;31(6):457–9. https://doi.org/10.1097/01.don.0000145431.59950.64 DOI: https://doi.org/10.1097/01.don.0000145431.59950.64

Khan AS, Ur Rehman S, Ahmad S, AlMaimouni YK, Alzamil MAS, Dummer PMH. Five decades of the International Endodontic Journal: bibliometric overview 1967–2020. Int Endod J. 2021;54(10):1819–39. https://doi.org/10.1111/iej.13595 DOI: https://doi.org/10.1111/iej.13595

Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review – part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16–27. DOI: https://doi.org/10.1016/j.joen.2009.09.006

Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review – part II: leakage and biocompatibility investigations. J Endod. 2010;36(2):190–202. https://doi.org/10.1016/j.joen.2009.09.010 DOI: https://doi.org/10.1016/j.joen.2009.09.010

Camilleri J. Classification of hydraulic cements used in dentistry. Front Dent Med. 2020;1:Article 9. https://doi.org/10.3389/fdmed.2020.00009 DOI: https://doi.org/10.3389/fdmed.2020.00009

International Organization for Standardization (ISO). International Standard ISO 6876:2012: dental root canal sealing materials. Geneva: International Organization for Standardization; 2012.

Khalil I, Naaman A, Camilleri J. Properties of tricalcium silicate sealers. J Endod. 2016;42(10):1529–35. https://doi.org/10.1016/j.joen.2016.06.002 DOI: https://doi.org/10.1016/j.joen.2016.06.002

Simundic Munitic M, Budimir A, Jakovljevic S, Anic I, Bago I. Short-term antibacterial efficacy of three bioceramic root canal sealers against enterococcus faecalis biofilms. Acta Stomatol Croat. 2020;54(1):3–9. https://doi.org/10.15644/asc54/1/1 DOI: https://doi.org/10.15644/asc54/1/1

Alsubait SA, Al Ajlan R, Mitwalli H, et al. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules. 2018;8(3):68. http://doi.org/10.3390/biom8030068 DOI: https://doi.org/10.3390/biom8030068

Arias-Moliz MT, Camilleri J. The effect of the final irrigant on the antimicrobial activity of root canal sealers. J Dent. 2016;52:30–6. https://doi.org/10.1016/j.jdent.2016.06.008 DOI: https://doi.org/10.1016/j.jdent.2016.06.008

Bose R, Ioannidis K, Foschi F, et al. Antimicrobial effectiveness of calcium silicate sealers against a nutrient-stressed multispecies biofilm. J Clin Med. 2020;9(9):2722. http://doi.org/10.3390/jcm9092722 DOI: https://doi.org/10.3390/jcm9092722

Seo DG, Lee D, Kim YM, Song D, Kim SY. Biocompatibility and Mineralization Activity of Three Calcium Silicate-Based Root Canal Sealers Compared to Conventional Resin-Based Sealer in Human Dental Pulp Stem Cells. Materials (Basel). 2019;12(15):2482. http://doi.org/10.3390/ma12152482 DOI: https://doi.org/10.3390/ma12152482

Gaudin A, Tolar M, Peters OA. Cytokine production and cytotoxicity of calcium silicate-based sealers in 2- and 3-dimensional cell culture models. J Endod. 2020;46(6):818–26. DOI: https://doi.org/10.1016/j.joen.2020.03.011

Vouzara T, Dimosiari G, Koulaouzidou EA, Economides N. Cytotoxicity of a new calcium silicate endodontic sealer. J Endod. 2018;44(5):849–52. https://doi.org/10.1016/j.joen.2018.01.015 DOI: https://doi.org/10.1016/j.joen.2018.01.015

Jung S, Sielker S, Hanisch MR, Libricht V, Schafer E, Dammaschke T. Cytotoxic effects of four different root canal sealers on human osteoblasts. PLoS One. 2018;13(3):e0194467. DOI: https://doi.org/10.1371/journal.pone.0194467

Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a Calcium Silicate-based Endodontic Cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro. J Endod. 2015;41(9):1469–73. https://doi.org/10.1016/j.joen.2015.04.011 DOI: https://doi.org/10.1016/j.joen.2015.04.011

Colombo M, Poggio C, Dagna A, et al. Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent. 2018;10(2):e120–6. https://doi.org/10.4317/jced.54548 DOI: https://doi.org/10.4317/jced.54548

Scarparo RK, Haddad D, Acasigua GA, Fossati AC, Fachin EV, Grecca FS. Mineral trioxide aggregate-based sealer: analysis of tissue reactions to a new endodontic material. J Endod. 2010;36(7):1174–8. https://doi.org/10.1016/j.joen.2010.02.031 DOI: https://doi.org/10.1016/j.joen.2010.02.031

Morgental RD, Vier-Pelisser FV, Oliveira SD, Antunes FC, Cogo DM, Kopper PM. Antibacterial activity of two MTA-based root canal sealers. Int Endod J. 2011;44(12):1128–33. DOI: https://doi.org/10.1111/j.1365-2591.2011.01931.x

Oliveira AC, Tanomaru JM, Faria-Junior N, Tanomaru-Filho M. Bacterial leakage in root canals filled with conventional and MTA-based sealers. Int Endod J. 2011;44(4):370–5. https://doi.org/10.1111/j.1365-2591.2011.01852.x DOI: https://doi.org/10.1111/j.1365-2591.2011.01852.x

Rodriguez-Lozano FJ, Lozano A, Lopez-Garcia S, et al. Biomineralization potential and biological properties of a new tantalum oxide (Ta(2)O(5))-containing calcium silicate cement. Clin Oral Investig. 2022;26(2):1427–41. DOI: https://doi.org/10.1007/s00784-021-04117-x

Weller RN, Tay KC, Garrett LV, et al. Microscopic appearance and apical seal of root canals filled with gutta-percha and ProRoot Endo Sealer after immersion in a phosphate-containing fluid. Int Endod J. 2008;41(11):977–86. https://doi.org/10.1111/j.1365-2591.2008.01462.x DOI: https://doi.org/10.1111/j.1365-2591.2008.01462.x

Olcay K, Tasli PN, Guven EP, et al. Effect of a novel bioceramic root canal sealer on the angiogenesis-enhancing potential of assorted human odontogenic stem cells compared with principal tricalcium silicate-based cements. J Appl Oral Sci. 2020;28:e20190215. DOI: https://doi.org/10.1590/1678-7757-2019-0215

Giacomino CM, Wealleans JA, Kuhn N, Diogenes A. Comparative biocompatibility and osteogenic potential of two bioceramic sealers. J Endod. 2019;45(1):51–6. https://doi.org/10.1016/j.joen.2018.08.007 DOI: https://doi.org/10.1016/j.joen.2018.08.007

Al-Sherbiny IM, Farid MH, Abu-Seida AM, Motawea IT, Bastawy HA. Chemico-physical and mechanical evaluation of three calcium silicate-based pulp capping materials. Saudi Dent J. 2021;33(4):207–14. DOI: https://doi.org/10.1016/j.sdentj.2020.02.001

Salles LP, Gomes-Cornelio AL, Guimaraes FC, et al. Mineral trioxide aggregate-based endodontic sealer stimulates hydroxyapatite nucleation in human osteoblast-like cell culture. J Endod. 2012;38(7):971–6. https://doi.org/10.1016/j.joen.2012.02.018 DOI: https://doi.org/10.1016/j.joen.2012.02.018

Zhou HM, Du TF, Shen Y, Wang ZJ, Zheng YF, Haapasalo M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod. 2015;41(1):56–61. https://doi.org/10.1016/j.joen.2014.09.012 DOI: https://doi.org/10.1016/j.joen.2014.09.012

Collado-Gonzalez M, Tomas-Catala CJ, Onate-Sanchez RE, Moraleda JM, Rodriguez-Lozano FJ. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH plus on human periodontal ligament stem cells. J Endod. 2017;43(5):816–22. https://doi.org/10.1016/j.joen.2017.01.001 DOI: https://doi.org/10.1016/j.joen.2017.01.001

Benetti F, de Azevedo Queiroz IO, Oliveira PHC, et al. Cytotoxicity and biocompatibility of a new bioceramic endodontic sealer containing calcium hydroxide. Braz Oral Res. 2019;33:e042. https://doi.org/10.1590/1807-3107bor-2019.vol33.0042 DOI: https://doi.org/10.1590/1807-3107bor-2019.vol33.0042

Altan H, Goztas Z, Inci G, Tosun G. Comparative evaluation of apical sealing ability of different root canal sealers. Eur Oral Res. 2018;52(3):117–121. DOI: https://doi.org/10.26650/eor.2018.438

Chew ST, Eshak Z, Al-Haddad A. Evaluation of interfacial adaptation and penetration of bioceramic-based sealers in oval root canals: a confocal laser scanning microscope study. Microsc Res Tech. 2023;86(7):754–61. https://doi.org/10.1002/jemt.24323 DOI: https://doi.org/10.1002/jemt.24323

Jo SB, Kim HK, Lee HN, et al. Physical properties and biofunctionalities of bioactive root canal sealers in vitro. Nanomaterials (Basel). 2020;10(9):1750. https://doi.org/10.3390/nano10091750 DOI: https://doi.org/10.3390/nano10091750

Souza LC, Neves GST, Kirkpatrick T, Letra A, Silva R. Physicochemical and biological properties of AH plus bioceramic. J Endod. 2023;49(1):69–76. DOI: https://doi.org/10.1016/j.joen.2022.10.009

Lopez-Garcia S, Pecci-Lloret MR, Guerrero-Girones J, et al. Comparative cytocompatibility and mineralization potential of Bio-C Sealer and TotalFill BC Sealer. Materials (Basel). 2019;12(19):3087. https://doi.org/10.3390/ma12193087 DOI: https://doi.org/10.3390/ma12193087

Torres FFE, Zordan-Bronzel CL, Guerreiro-Tanomaru JM, Chavez-Andrade GM, Pinto JC, Tanomaru-Filho M. Effect of immersion in distilled water or phosphate-buffered saline on the solubility, volumetric change and presence of voids within new calcium silicate-based root canal sealers. Int Endod J. 2020;53(3):385–91. DOI: https://doi.org/10.1111/iej.13225

Zordan-Bronzel CL, Esteves Torres FF, Tanomaru-Filho M, Chavez-Andrade GM, Bosso-Martelo R, Guerreiro-Tanomaru JM. Evaluation of physicochemical properties of a new calcium silicate-based sealer, Bio-C Sealer. J Endod. 2019;45(10):1248–52. https://doi.org/10.1016/j.joen.2019.07.006 DOI: https://doi.org/10.1016/j.joen.2019.07.006

Oh H, Kim E, Lee S, et al. Comparison of biocompatibility of calcium silicate-based sealers and epoxy resin-based sealer on human periodontal ligament stem cell. Materials. 2020;13(22):5242. https://doi.org/10.3390/ma13225242 DOI: https://doi.org/10.3390/ma13225242

Lee JK, Kim S, Lee S, Kim HC, Kim E. In vitro comparison of biocompatibility of calcium silicate-based root canal sealers. Materials (Basel). 2019;12(15):2411. https://doi.org/10.3390/ma12152411 DOI: https://doi.org/10.3390/ma12152411

Zoufan K, Jiang J, Komabayashi T, Wang YH, Safavi KE, Zhu Q. Cytotoxicity evaluation of Gutta Flow and Endo Sequence BC sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(5):657–61. DOI: https://doi.org/10.1016/j.tripleo.2011.03.050

Chen B, Haapasalo M, Mobuchon C, Li X, Ma J, Shen Y. Cytotoxicity and the effect of temperature on physical properties and chemical composition of a new calcium silicate-based root canal sealer. J Endod. 2020;46(4):531–8. https://doi.org/10.1016/j.joen.2019.12.009 DOI: https://doi.org/10.1016/j.joen.2019.12.009

Willershausen I, Callaway A, Briseno B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med. 2011;7:15. DOI: https://doi.org/10.1186/1746-160X-7-15

Ballullaya SV, Vinay V, Thumu J, Devalla S, Bollu IP, Balla S. Stereomicroscopic dye leakage measurement of six different root canal sealers. J Clin Diagn Res. 2017;11(6):ZC65–8. https://doi.org/10.7860/JCDR/2017/25780.10077 DOI: https://doi.org/10.7860/JCDR/2017/25780.10077

Hegde V, Arora S. Sealing ability of three hydrophilic single-cone obturation systems: an in vitro glucose leakage study. Contemp Clin Dent. 2015;6(Suppl 1):S86–9. DOI: https://doi.org/10.4103/0976-237X.152953

Wang Z, Shen Y, Haapasalo M. Antimicrobial and antibiofilm properties of bioceramic materials in endodontics. Materials (Basel). 2021;14(24):7594. https://doi.org/10.3390/ma14247594 DOI: https://doi.org/10.3390/ma14247594

Du T, Wang Z, Shen Y, Ma J, Cao Y, Haapasalo M. Combined antibacterial effect of sodium hypochlorite and root canal sealers against enterococcus faecalis biofilms in dentin canals. J Endod. 2015;41(8):1294–8. https://doi.org/10.1016/j.joen.2015.04.023 DOI: https://doi.org/10.1016/j.joen.2015.04.023

Bukhari S, Karabucak B. The antimicrobial effect of bioceramic sealer on an 8-week matured enterococcus faecalis biofilm attached to root canal dentinal surface. J Endod. 2019;45(8):1047–52. https://doi.org/10.1016/j.joen.2019.04.004 DOI: https://doi.org/10.1016/j.joen.2019.04.004

Zhang W, Li Z, Peng B. Assessment of a new root canal sealer’s apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):e79–82. DOI: https://doi.org/10.1016/j.tripleo.2009.02.024

Ulusoy OI, Nayir Y, Celik K, Yaman SD. Apical microleakage of different root canal sealers after use of maleic acid and EDTA as final irrigants. Braz Oral Res. 2014;28:S1806-83242014000100257. https://doi.org/10.1590/1807-3107BOR-2014.vol28.0048 DOI: https://doi.org/10.1590/1807-3107BOR-2014.vol28.0048

Marashdeh M, Stewart C, Kishen A, Levesque C, Finer Y. Drug-silica coassembled particles improve antimicrobial properties of endodontic sealers. J Endod. 2021;47(5):793–9. https://doi.org/10.1016/j.joen.2021.02.003 DOI: https://doi.org/10.1016/j.joen.2021.02.003

Ghoneim AG, Lutfy RA, Sabet NE, Fayyad DM. Resistance to fracture of roots obturated with novel canal-filling systems. J Endod. 2011;37(11):1590–2. DOI: https://doi.org/10.1016/j.joen.2011.08.008

Zordan-Bronzel CL, Tanomaru-Filho M, Torres FFE, Chavez-Andrade GM, Rodrigues EM, Guerreiro-Tanomaru JM. Physicochemical properties, cytocompatibility and antibiofilm activity of a new calcium silicate sealer. Braz Dent J. 2021;32(4):8–18. DOI: https://doi.org/10.1590/0103-6440202103314

Kapralos V, Koutroulis A, Orstavik D, Sunde PT, Rukke HV. Antibacterial activity of endodontic sealers against planktonic bacteria and bacteria in biofilms. J Endod. 2018;44(1):149–54. https://doi.org/10.1016/j.joen.2017.08.023 DOI: https://doi.org/10.1016/j.joen.2017.08.023

Xuereb M, Vella P, Damidot D, Sammut CV, Camilleri J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod. 2015;41(1):111–24. DOI: https://doi.org/10.1016/j.joen.2014.09.015

Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Interfacial characteristics and cytocompatibility of hydraulic sealer cements. J Endod. 2018;44(6):1007–17. https://doi.org/10.1016/j.joen.2017.11.011 DOI: https://doi.org/10.1016/j.joen.2017.11.011

Viapiana R, Moinzadeh AT, Camilleri L, Wesselink PR, Tanomaru Filho M, Camilleri J. Porosity and sealing ability of root fillings with gutta-percha and BioRoot RCS or AH Plus sealers. Evaluation by three ex vivo methods. Int Endod J. 2016;49(8):774–82. DOI: https://doi.org/10.1111/iej.12513

Kapralos V, Rukke HV, Orstavik D, Koutroulis A, Camilleri J, Sunde PT. Antimicrobial and physicochemical characterization of endodontic sealers after exposure to chlorhexidine digluconate. Dent Mater. 2021;37(2):249–63. DOI: https://doi.org/10.1016/j.dental.2020.11.011

Donnermeyer D, Vahdat-Pajouh N, Schafer E, Dammaschke T. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology. 2019;107(2):231–6. https://doi.org/10.1007/s10266-018-0392-z DOI: https://doi.org/10.1007/s10266-018-0392-z

Janini ACP, Pelepenko LE, Boldieri JM, et al. Biocompatibility analysis in subcutaneous tissue and physico-chemical analysis of pre-mixed calcium silicate-based sealers. Clin Oral Investig. 2023;27(5):2221–34. DOI: https://doi.org/10.1007/s00784-023-04957-9

Ferreira CMA, de Lima CO, Pinto KP, et al. Volumetric changes in root canal sealers in ex vivo and a novel animal model approach. Int Endod J. 2023;56(9):1108–17. DOI: https://doi.org/10.1111/iej.13940

Quaresma SAL, Alves Dos Santos GN, Silva-Sousa AC, et al. Physicochemical properties of calcium silicate cement based endodontic sealers. J Mech Behav Biomed Mater. 2024;151:106400. https://doi.org/10.1016/j.jmbbm.2024.106400 DOI: https://doi.org/10.1016/j.jmbbm.2024.106400

Donnermeyer D, Schemkamper P, Burklein S, Schafer E. Short and long-term solubility, alkalizing effect, and thermal persistence of premixed calcium silicate-based sealers: AH plus bioceramic sealer vs. total fill bc sealer. Materials (Basel). 2022;15(20):7320. http://doi.org/10.3390/ma15207320 DOI: https://doi.org/10.3390/ma15207320

Raman V, Camilleri J. Characterization and assessment of physical properties of 3 single syringe hydraulic cement-based sealers. J Endod. 2024;50(3):381–8. https://doi.org/10.1016/j.joen.2024.01.001 DOI: https://doi.org/10.1016/j.joen.2024.01.001

Guivarc’h M, Jeanneau C, Giraud T, et al. An international survey on the use of calcium silicate-based sealers in non-surgical endodontic treatment. Clin Oral Investig. 2020;24(1):417–24. DOI: https://doi.org/10.1007/s00784-019-02920-1

Jeong JW, DeGraft-Johnson A, Dorn SO, Di Fiore PM. Dentinal tubule penetration of a calcium silicate-based root canal sealer with different obturation methods. J Endod. 2017;43(4):633–7. https://doi.org/10.1016/j.joen.2016.11.023 DOI: https://doi.org/10.1016/j.joen.2016.11.023

Chybowski EA, Glickman GN, Patel Y, Fleury A, Solomon E, He J. Clinical outcome of non-surgical root canal treatment using a single-cone technique with endosequence bioceramic sealer: a retrospective analysis. J Endod. 2018;44(6):941–5. https://doi.org/10.1016/j.joen.2018.02.019 DOI: https://doi.org/10.1016/j.joen.2018.02.019

Zavattini A, Knight A, Foschi F, Mannocci F. Outcome of root canal treatments using a new calcium silicate root canal sealer: a non-randomized clinical trial. J Clin Med. 2020;9(3):782. https://doi.org/10.3390/jcm9030782 DOI: https://doi.org/10.3390/jcm9030782

Bardini G, Casula L, Ambu E, Musu D, Mercade M, Cotti E. A 12-month follow-up of primary and secondary root canal treatment in teeth obturated with a hydraulic sealer. Clin Oral Investig. 2021;25(5):2757–64. https://doi.org/10.1007/s00784-020-03590-0 DOI: https://doi.org/10.1007/s00784-020-03590-0

Molven O, Halse A, Fristad I, MacDonald-Jankowski D. Periapical changes following root-canal treatment observed 20–27 years postoperatively. Int Endod J. 2002;35(9):784–90. https://doi.org/10.1046/j.1365-2591.2002.00568.x DOI: https://doi.org/10.1046/j.1365-2591.2002.00568.x

Lopez-Valverde I, Vignoletti F, Vignoletti G, Martin C, Sanz M. Long-term tooth survival and success following primary root canal treatment: a 5- to 37-year retrospective observation. Clin Oral Investig. 2023;27(6):3233–44. https://doi.org/10.1007/s00784-023-04938-y DOI: https://doi.org/10.1007/s00784-023-04938-y

Published

2024-06-04