Root-filling materials for endodontic surgery: biological and clinical aspects
DOI:
https://doi.org/10.2340/biid.v11.42172Keywords:
Endodontic surgery, retrograde root filling materials, biological propertiesAbstract
The placement of root filling materials aims to prevent the occurrence of post-treatment apical periodontitis following completion of endodontic treatment. Materials should possess properties that will not permit bacterial invasion and infection, namely excellent sealing ability and/or antibacterial properties. In root-end filling procedures or repair of root perforations, the root filling materials are placed in a particularly challenging clinical environment, as they interface with a relatively large area with the periradicular tissues. The biological properties of these materials are therefore of significant importance. The current review discusses the most widely used materials for endodontic surgery (i.e., root-end filling and perforation repair), with particular focus on their biological characteristics, namely antibacterial properties and interactions with host tissue cells, together with clinical studies. Properties of amalgam, glass ionomer cements (GICs), resin systems, zinc oxide eugenol-based cements and hydraulic calcium silicate cements (HCSCs), together with representative and well-researched commercial materials in the context of their use in endodontic surgery are presented. While the use of HCSCs seems to offer several biological advantages, together with addressing issues with the initial formulation in the most recent versions, materials with different chemical compositions, such as zinc oxide eugenol-based cements, are still in use and appear to provide similar clinical success rates to HCSCs. Thus, the significance of the currently available materials on clinical outcomes remains unclear.
Downloads
References
Peters OA, Peters CI, Basrani B. Cleaning and shaping of the root canal system. In: Berman LH, Hargreaves KM, editors. Cohen’s pathways of the pulp. 12th ed. Amsterdam: Elsevier; 2020. p. 456–536.
European Society of Endodontology. Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J. 2006;39:921–30. https://doi.org/10.1111/j.1365-2591.2006.01180.x DOI: https://doi.org/10.1111/j.1365-2591.2006.01180.x
Ørstavik D. Endodontic filling materials. Endod Top. 2014;31:53–67. https://doi.org/10.1111/etp.12068 DOI: https://doi.org/10.1111/etp.12068
Ørstavik D. Endodontic treatment of apical periodontitis. In: Ørstavik D, editor. Essential endodontology. 3rd ed. Hoboken: Wiley-Blackwell; 2019. p. 313–44. DOI: https://doi.org/10.1002/9781119272014.ch11
Camilleri J, Pertl C. Root-end filling and perforation repair materials and techniques. In: Camilleri J, editor. Endodontic materials in clinical practice. Hoboken: Wiley-Blackwell, 2021. p. 219–61. DOI: https://doi.org/10.1002/9781119513568.ch7
Braz-Silva PH, Bergamini ML, Mardegan AP, De Rosa CS, Hasseus B, Jonasson P. Inflammatory profile of chronic apical periodontitis: a literature review. Acta Odontol Scand. 2019;77:173–80. https://doi.org/10.1080/00016357.2018.1521005 DOI: https://doi.org/10.1080/00016357.2018.1521005
Ørstavik D. Obturation of root canals. In: Chugal N, Lin LM, editors. Endodontic prognosis: clinical guide for optimal treatment outcome. Springer; 2017. p. 141–59. DOI: https://doi.org/10.1007/978-3-319-42412-5_9
Camilleri J. Classification of hydraulic cements used in dentistry. Front Dent Med. 2020;1:9. https://doi.org/10.3389/fdmed.2020.00009 DOI: https://doi.org/10.3389/fdmed.2020.00009
Johnson BR. Considerations in the selection of a root-end filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:398–404. https://doi.org/10.1016/S1079-2104(99)70237-4 DOI: https://doi.org/10.1016/S1079-2104(99)70237-4
Gutmann,JL, Harrison JH. Surgical endodontics. Blackwell Scientific Oxford: Publications; 1991.
Torabinejad M, Pitt Ford TR. Root end filling materials: a review. Endod Dent Traumatol. 1996;12:161–78. https://doi.org/10.1111/j.1600-9657.1996.tb00510.x DOI: https://doi.org/10.1111/j.1600-9657.1996.tb00510.x
Block RM, Bushell A. retrograde amalgam procedures for mandibular posterior teeth. J Endod. 1982;8:107–12. https://doi.org/10.1016/S0099-2399(82)80244-6 DOI: https://doi.org/10.1016/S0099-2399(82)80244-6
Friedman S. Retrograde approaches in endodontic therapy. Endod Dent Traumatol. 1991;7:97–107. https://doi.org/10.1111/j.1600-9657.1991.tb00192.x DOI: https://doi.org/10.1111/j.1600-9657.1991.tb00192.x
ElDeeb ME, ElDeeb M, Tabibi A, Jensen JR. An evaluation of the use of amalgam, cavit, and calcium hydroxide in the repair of furcation perforations. J Endod. 1982;8:459–66. https://doi.org/10.1016/S0099-2399(82)80151-9 DOI: https://doi.org/10.1016/S0099-2399(82)80151-9
Bronkhorst MA, Bergé SJ, Van Damme PA, Borstlap WA, Merkx MA. Use of root-end filling materials in a surgical apical endodontic treatment in the Netherlands. Ned Tijdschr Tandheelkd. 2008;115:423–7.
Bodrumlu E. Biocompatibility of retrograde root filling materials: a review. Aust Endod J. 2008;34:30–5. https://doi.org/10.1111/j.1747-4477.2007.00085.x DOI: https://doi.org/10.1111/j.1747-4477.2007.00085.x
Tronstad L, Wennberg A. In vitro assessment of the toxicity of filling materials. Int Endod J. 1980;13:131–8. https://doi.org/10.1111/j.1365-2591.1980.tb00670.x DOI: https://doi.org/10.1111/j.1365-2591.1980.tb00670.x
Eley BM, Cox SW. The release, absorption and possible health effects of mercury from dental amalgam: a review of recent findings. Br Dent J. 1993;175:355–62. DOI: https://doi.org/10.1038/sj.bdj.4808325
Ravnholt G. Corrosion current and pH rise around titanium coupled to dental alloys. Scand J Dent Res. 1988;96:466–72. https://doi.org/10.1111/j.1600-0722.1988.tb01585.x DOI: https://doi.org/10.1111/j.1600-0722.1988.tb01585.x
Harrison JD, Rowley PS, Peters PD. Amalgam tattoos: light and electron microscopy and electron-probe micro-analysis. J Pathol. 1977;121:83–92. https://doi.org/10.1002/path.1711210204 DOI: https://doi.org/10.1002/path.1711210204
Eley BM. Tissue reactions to implanted dental amalgam, including assessment by energy dispersive x-ray micro-analysis. J. Pathol. 1982;138:251–72. https://doi.org/10.1002/path.1711380307 DOI: https://doi.org/10.1002/path.1711380307
Chong BS, Pitt Ford TR, Watson TF, Wilson RF. Sealing ability of potential retrograde root filling materials. Endod Dent Traumatol. 1995;11:264–9. DOI: https://doi.org/10.1111/j.1600-9657.1995.tb00501.x
Wu MK, Kean SD, Kersten HW. Quantitative microleakage study on a new retrograde filling technique. Int Endod J. 1990;23:245–9. https://doi.org/10.1111/j.1365-2591.1990.tb00856.x DOI: https://doi.org/10.1111/j.1365-2591.1990.tb00856.x
Inoue S, Yoshimura M, Tinkle JS, Marshall FJ. A 24-week study of the microleakage of four retrofilling materials using a fluid filtration method. J Endod. 1991;17:369–75. https://doi.org/10.1016/S0099-2399(06)81987-4 DOI: https://doi.org/10.1016/S0099-2399(06)81987-4
Torabinejad M, Rastegar AF, Kettering JD, Pitt Ford T R. Bacterial leakage of mineral trioxide aggregate as a root-end filling material. J Endod. 1995;21:109–12. https://doi.org/10.1016/S0099-2399(06)80433-4 DOI: https://doi.org/10.1016/S0099-2399(06)80433-4
Wu MK, Wesselink PR. Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance. Int Endod J. 1993;26:37–43. https://doi.org/10.1111/j.1365-2591.1993.tb00540.x DOI: https://doi.org/10.1111/j.1365-2591.1993.tb00540.x
The Editorial Board of the Journal of Endodontics. Wanted: a base of evidence. J Endod. 2007;33:1401–2. https://doi.org/10.1016/j.joen.2007.09.004 DOI: https://doi.org/10.1016/j.joen.2007.09.004
De-Deus G, Souza EM, Silva EJNL, Belladonna FG, Simões-Carvalho M, Cavalcante DM, Versiani MA. A critical analysis of research methods and experimental models to study root canal fillings. Int Endod J. 2022;55:384–445. DOI: https://doi.org/10.1111/iej.13713
Chong BS, Ford TR, Kariyawasam SP. Tissue response to potential root-end filling materials in infected root canals. Int Endod J. 1997;30:102–14. https://doi.org/10.1111/j.1365-2591.1997.tb00682.x DOI: https://doi.org/10.1111/j.1365-2591.1997.tb00682.x
Pitt Ford TR, Andreasen JO, Dorn SO, Kariyawasam SP. Effect of various zinc oxide materials as root-end fillings on healing after replantation. Int Endod J. 1995;28:273–8. https://doi.org/10.1111/j.1365-2591.1995.tb00315.x DOI: https://doi.org/10.1111/j.1365-2591.1995.tb00315.x
Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod. 1997;23:225–8. DOI: https://doi.org/10.1016/S0099-2399(97)80051-9
Baek SH, Plenk H, Jr, KimS. Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. J Endod. 2005;31:444–9. https://doi.org/10.1097/01.don.0000148145.81366.a5 DOI: https://doi.org/10.1097/01.don.0000148145.81366.a5
Baek SH, Lee WC, Setzer FC, Kim,S. Periapical bone regeneration after endodontic microsurgery with three different root-end filling materials: amalgam, SuperEBA, and mineral trioxide aggregate. J Endod. 2010;36:1323–5. https://doi.org/10.1016/S0099-2399(06)81912-6 DOI: https://doi.org/10.1016/j.joen.2010.04.008
Dorn SO, Gartner AH. Retrograde filling materials: a retrospective success-failure study of amalgam, EBA, and IRM. J Endod. 1990;16:391–3. DOI: https://doi.org/10.1016/S0099-2399(06)81912-6
Setzer FC, Shah SB, Kohli MR, Karabucak B, Kim S. Outcome of endodontic surgery: a meta-analysis of the literature – part 1: comparison of traditional root-end surgery and endodontic microsurgery. J Endod. 2010;36:1757–65. https://doi.org/10.1016/j.joen.2010.08.007 DOI: https://doi.org/10.1016/j.joen.2010.08.007
European Union. Regulation (EU) 2017/852 of the European Parliament and of the Council of 17 May 2017 on mercury, and repealing Regulation (EC) No 1102/2008. 2017.
Sasanaluckit P, Albustany KR, Doherty PJ, Williams DF. Biocompatibility of glass ionomer cements. Biomaterials. 1993;14:906–16. https://doi.org/10.1016/0142-9612(93)90132-L DOI: https://doi.org/10.1016/0142-9612(93)90132-L
Crisp S, Lewis BG, Wilson AD. Characterization of glass-ionomer cements. 5. The effect of the tartaric acid concentration in the liquid component. J Dent. 1979;7:304–12. DOI: https://doi.org/10.1016/0300-5712(79)90143-X
Tezuka C, Karasawa Y. Setting solution for dental glass ionomer cements. US Patent number: 4089830A. 1978.
Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132:133–5. https://doi.org/10.1038/sj.bdj.4802810 DOI: https://doi.org/10.1038/sj.bdj.4802810
Wilson AD, Kent BE. The glass-ionomer cement, a new translucent dental filling material. J Appl Chem Biotech. 1971;21:313. https://doi.org/10.1002/jctb.5020211101 DOI: https://doi.org/10.1002/jctb.5020211101
Sidhu SK. Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J. 2011;56:23–30. DOI: https://doi.org/10.1111/j.1834-7819.2010.01293.x
Sidhu SK, Nicholson JW. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7:16. https://doi.org/10.3390/jfb7030016 DOI: https://doi.org/10.3390/jfb7030016
Wilson A, McLean J. Glass-Ionomer Cements. Quintessence; 1988. DOI: https://doi.org/10.1038/sj.bdj.4806434
Kim DA, Abo-Mosallam HA, Lee HY, Kim GR, Kim HW, Lee HH. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses. Mater Sci Eng C Mater Biol Appl. 2014;42:665–71. https://doi.org/10.1016/j.msec.2014.06.006 DOI: https://doi.org/10.1016/j.msec.2014.06.006
Gomes FO, Pires RA, Reis RL. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability. Mater Sci Eng C Mater Biol Appl. 2013;33:1361–70. DOI: https://doi.org/10.1016/j.msec.2012.12.037
Kim DA, Abo-Mosallam H, Lee HY, Lee JH, Kim HW, Lee HH. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO. J Appl Oral Sci. 2015;23:369–75. https://doi.org/10.1590/1678-775720150035 DOI: https://doi.org/10.1590/1678-775720150035
Souza NJ, Justo GZ, Oliveira CR, Haun M, Bincoletto C. Cytotoxicity of materials used in perforation repair tested using the V79 fibroblast cell line and the granulocyte-macrophage progenitor cells. Int Endod J. 2006;39:40–7. DOI: https://doi.org/10.1111/j.1365-2591.2005.01045.x
Vajrabhaya LO, Korsuwannawong S, Jantarat J, Korre S. Biocompatibility of furcal perforation repair material using cell culture technique: Ketac Molar versus ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:e48–50. https://doi.org/10.1016/j.tripleo.2006.05.015 DOI: https://doi.org/10.1016/j.tripleo.2006.05.015
Lin CP, Chen YJ, Lee YL, Wang JS, Chang MC, Lan WH, et al. Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts. J Biomed Mater Res B Appl Biomater. 2004;71:429–40. https://doi.org/10.1002/jbm.b.30107 DOI: https://doi.org/10.1002/jbm.b.30107
Al-Hiyasat AS, Al-Sa’Eed OR, Darmani H. Quality of cellular attachment to various root-end filling materials. J Appl Oral Sci. 2012;20:82–8. DOI: https://doi.org/10.1590/S1678-77572012000100015
Vanni JR, Della-Bona A, Figueiredo JA, Pedro G, Voss D, Kopper PM. Radiographic evaluation of furcal perforations sealed with different materials in dogs’ teeth. J Appl Oral Sci. 2011;19:421–5. https://doi.org/10.1590/S1678-77572011005000019 DOI: https://doi.org/10.1590/S1678-77572011005000019
Lee BN, Son HJ, Noh HJ, Koh JT, Chang HS, Hwang IN, et al. Cytotoxicity of newly developed ortho MTA root-end filling materials. J Endod. 2012;38:1627–30. DOI: https://doi.org/10.1016/j.joen.2012.09.004
Tassery H, Pertot WJ, Camps J, Proust JP, Déjou J. Comparison of two implantation sites for testing intraosseous biocompatibility. J Endod. 1999;25:615–8. https://doi.org/10.1016/S0099-2399(99)80321-5 DOI: https://doi.org/10.1016/S0099-2399(99)80321-5
Vermeersch G, Leloup G, Delmée M, Vreven J. Antibacterial activity of glass-ionomer cements, compomers and resin composites: relationship between acidity and material setting phase. J Oral Rehabil. 2005;32:368–74. https://doi.org/10.1111/j.1365-2842.2004.01300.x DOI: https://doi.org/10.1111/j.1365-2842.2004.01300.x
DeSchepper EJ, White RR, von der Lehr W. Antibacterial effects of glass ionomers. Am J Dent. 1989;2:51–6.
Seppä L, Forss H, Ogaard B. The effect of fluoride application on fluoride release and the antibacterial action of glass ionomers. J Dent Res. 1993;72:1310–4. https://doi.org/10.1177/00220345930720090901 DOI: https://doi.org/10.1177/00220345930720090901
Niederman R, Theodosopoulou JN. A systematic review of in vivo retrograde obturation materials. Int Endod J. 2003;36:577–85. DOI: https://doi.org/10.1046/j.1365-2591.2003.00696.x
Gupta SK, Saxena P, Pant VA, Pant AB. Adhesion and biologic behavior of human periodontal fibroblast cells to resin ionomer Geristore: a comparative analysis. Dent Traumatol. 2013;29:389–93. https://doi.org/10.1111/edt.12016 DOI: https://doi.org/10.1111/edt.12016
Al-Sabek F, Shostad S, Kirkwood KL. Preferential attachment of human gingival fibroblasts to the resin ionomer Geristore. J Endod. 2005;31:205–8. https://doi.org/10.1097/01.don.0000137650.61607.25 DOI: https://doi.org/10.1097/01.don.0000137650.61607.25
Makkawy HA, Koka S, Lavin MT, Ewoldsen NO. Cytotoxicity of root perforation repair materials. J Endod. 1998;24:477–9. DOI: https://doi.org/10.1016/S0099-2399(98)80050-2
Al-Sa’eed OR, Al-Hiyasat AS, Darmani H. The effects of six root-end filling materials and their leachable components on cell viability. J Endod. 2008;34:1410–4. https://doi.org/10.1016/j.joen.2008.08.001 DOI: https://doi.org/10.1016/j.joen.2008.08.001
Camp MA, Jeansonne BG, Lallier T. Adhesion of human fibroblasts to root-end-filling materials. J Endod. 2003;29:602–7. DOI: https://doi.org/10.1097/00004770-200309000-00014
Tawil PZ, Trope M, Curran AE, Caplan DJ, Kirakozova A, Duggan DJ, Teixeira FB. Periapical microsurgery: an in vivo evaluation of endodontic root-end filling materials. J Endod. 2009;35:357–62. https://doi.org/10.1016/j.joen.2008.12.001 DOI: https://doi.org/10.1016/j.joen.2008.12.001
Rud J, Rud V, Munksgaard EC. Retrograde root filling with dentin-bonded modified resin composite. J Endod. 1996;22:477–80. https://doi.org/10.1016/S0099-2399(96)80082-3 DOI: https://doi.org/10.1016/S0099-2399(96)80082-3
von Arx T, Hänni S, Jensen SS. Clinical results with two different methods of root-end preparation and filling in apical surgery: mineral trioxide aggregate and adhesive resin composite. J Endod. 2010;36:1122–9. https://doi.org/10.1016/j.joen.2010.03.040 DOI: https://doi.org/10.1016/j.joen.2010.03.040
Rud J, Munksgaard EC, Andreasen JO, Rud V, Asmussen E. Retrograde root filling with composite and a dentin-bonding agent. 1. Endod Dent Traumatol. 1991;7:118–25. DOI: https://doi.org/10.1111/j.1600-9657.1991.tb00195.x
Rakich DR, Wataha JC, Lefebvre CA, Weller RN. Effects of dentin bonding agents on macrophage mitochondrial activity. J Endod. 1998;24:528–33. DOI: https://doi.org/10.1016/S0099-2399(98)80071-X
Rakich DR, Wataha JC, Lefebvre CA, Weller RN. Effect of dentin bonding agents on the secretion of inflammatory mediators from macrophages. J Endod. 1999;25:114–7. https://doi.org/10.1016/S0099-2399(99)80008-9 DOI: https://doi.org/10.1016/S0099-2399(99)80008-9
Vahid A, Hadjati J, Kermanshah H, Ghabraei S. Effects of cured dentin bonding materials on human monocyte viability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98:619–21. https://doi.org/10.1016/j.tripleo.2004.04.005 DOI: https://doi.org/10.1016/j.tripleo.2004.04.005
Haglund R, He J, Jarvis J, Safavi KE, Spångberg LS, Zhu Q. Effects of root-end filling materials on fibroblasts and macrophages in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:739–45. DOI: https://doi.org/10.1067/moe.2003.231
Ozbas H, Yaltirik M, Bilgic B, Issever H. Reactions of connective tissue to compomers, composite and amalgam root-end filling materials. Int Endod J. 2003;36:281–7. https://doi.org/10.1046/j.1365-2591.2003.00649.x DOI: https://doi.org/10.1046/j.1365-2591.2003.00649.x
Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial effect of selected root-end filling materials. J Endod. 2006;32:345–9. DOI: https://doi.org/10.1016/j.joen.2005.09.009
Rud J, Rud V, Munksgaard EC. Long-term evaluation of retrograde root filling with dentin-bonded resin composite. J Endod. 1996;22:90–3. https://doi.org/10.1016/S0099-2399(96)80280-9 DOI: https://doi.org/10.1016/S0099-2399(96)80280-9
Jensen SS, Nattestad A, Egdø P, Sewerin I, Munksgaard EC, Schou S. A prospective, randomized, comparative clinical study of resin composite and glass ionomer cement for retrograde root filling. Clin Oral Investig. 2002;6:236–43. https://doi.org/10.1007/s00784-002-0172-5 DOI: https://doi.org/10.1007/s00784-002-0172-5
Yazdi PM, Schou S, Jensen SS, Stoltze K, Kenrad B, Sewerin I. Dentine-bonded resin composite (Retroplast) for root-end filling: a prospective clinical and radiographic study with a mean follow-up period of 8 years. Int Endod J. 2007;40:493–503. DOI: https://doi.org/10.1111/j.1365-2591.2007.01242.x
Kohli MR, Berenji H, Setzer FC, Lee SM, Karabucak B. Outcome of endodontic surgery: a meta-analysis of the literature-part 3: comparison of endodontic microsurgical techniques with 2 different root-end filling materials. J Endod. 2018;44:923–31. https://doi.org/10.1016/j.joen.2018.02.021 DOI: https://doi.org/10.1016/j.joen.2018.02.021
von Arx T, Jensen SS, Hänni S, Friedman S. Five-year longitudinal assessment of the prognosis of apical microsurgery. J Endod. 2012;38:570–9. DOI: https://doi.org/10.1016/j.joen.2012.02.002
Garcia GF. Apicoectomia experimental. Rev Odontol. 1937;25:145–60.
Nicholls E. The role of surgery in endodontics. Br Dent J. 1965;118:59–71.
Yaccino JM, Walker WA, 3rd, Carnes DL, Jr, Schindler WG. Longitudinal microleakage evaluation of Super-EBA as a root-end sealing material. J. Endod. 1999;25:552–4. https://doi.org/10.1016/S0099-2399(99)80378-1 DOI: https://doi.org/10.1016/S0099-2399(99)80378-1
Setzer FC, Karabucak B. Surgical endodontics. In: Ørstavik D, editor. Essential endodontology, 3rd ed. Hoboken: Wiley-Blackwell; 2019. p. 345–85. DOI: https://doi.org/10.1002/9781119272014.ch12
Hume WR. In vitro studies on the local pharmacodynamics, pharmacology and toxicology of eugenol and zinc oxide-eugenol. Int Endod J. 1988;21:130–4. DOI: https://doi.org/10.1111/j.1365-2591.1988.tb00966.x
Markowitz K, Moynihan M, Liu M, Kim S. Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1992;73:729–37. https://doi.org/10.1016/0030-4220(92)90020-Q DOI: https://doi.org/10.1016/0030-4220(92)90020-Q
Zhu Q, Safavi KE, Spangberg LS. Cytotoxic evaluation of root-end filling materials in cultures of human osteoblast-like cells and periodontal ligament cells. J Endod. 1999;25:410–2. DOI: https://doi.org/10.1016/S0099-2399(99)80267-2
Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod. 1995;21:489–92. https://doi.org/10.1016/S0099-2399(06)80518-2 DOI: https://doi.org/10.1016/S0099-2399(06)80518-2
Zhu Q, Haglund R, Safavi KE, Spangberg LS. Adhesion of human osteoblasts on root-end filling materials. J Endod. 2000;26:404–6. DOI: https://doi.org/10.1097/00004770-200007000-00006
Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod. 2000;26:288–91. DOI: https://doi.org/10.1097/00004770-200005000-00010
Balto H, Al-Nazhan S. Attachment of human periodontal ligament fibroblasts to 3 different root-end filling materials: scanning electron microscope observation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:222–7. https://doi.org/10.1067/moe.2003.96 DOI: https://doi.org/10.1067/moe.2003.96
Bonson S, Jeansonne BG, Lallier TE. Root-end filling materials alter fibroblast differentiation. J Dent Res 2004;83:408–13. https://doi.org/10.1177/154405910408300511 DOI: https://doi.org/10.1177/154405910408300511
Osorio RM, Hefti A, Vertucci FJ, Shawley AL. Cytotoxicity of endodontic materials. J Endod. 1998;24:91–6. DOI: https://doi.org/10.1016/S0099-2399(98)80084-8
Coaguila-Llerena H, Vaisberg A, Velasquez-Huaman Z. In vitro cytotoxicity evaluation of three root-end filling materials in human periodontal ligament fibroblasts. Braz Dent J. 2016;27:187–91. https://doi.org/10.1590/0103-6440201600447 DOI: https://doi.org/10.1590/0103-6440201600447
Huang TH, Yang CC, Ding SJ, Yan M, Chou MY, Kao CT. Biocompatibility of human osteosarcoma cells to root end filling materials. J Biomed Mater Res B Appl Biomater. 2005;72:140–5. DOI: https://doi.org/10.1002/jbm.b.30137
Mozayeni MA, Milani AS, Marvasti LA, Asgary S. Cytotoxicity of calcium enriched mixture cement compared with mineral trioxide aggregate and intermediate restorative material. Aust Endod J. 2012;38:70–5. https://doi.org/10.1111/j.1747-4477.2010.00269.x DOI: https://doi.org/10.1111/j.1747-4477.2010.00269.x
Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod. 2011;37:793–8. DOI: https://doi.org/10.1016/j.joen.2011.02.029
Pitt Ford TR, Andreasen JO, Dorn SO, Kariyawasam SP. Effect of super-EBA as a root end filling on healing after replantation. J Endod. 1995;21:13–5. DOI: https://doi.org/10.1016/S0099-2399(06)80550-9
Pitt Ford TR, Andreasen JO, Dorn SO, Kariyawasam SP. Effect of IRM root end fillings on healing after replantation. J Endod. 1994;20:381–5. https://doi.org/10.1016/S0099-2399(06)80295-5 DOI: https://doi.org/10.1016/S0099-2399(06)80295-5
Wälivaara DÅ, Abrahamsson P, Isaksson S, Salata LA, Sennerby L, Dahlin C. Periapical tissue response after use of intermediate restorative material, gutta-percha, reinforced zinc oxide cement, and mineral trioxide aggregate as retrograde root-end filling materials: a histologic study in dogs. J Oral Maxillofac Surg. 2012;70:2041–7. DOI: https://doi.org/10.1016/j.joms.2012.01.033
Economides N, Pantelidou O, Kokkas A, Tziafas D. Short-term periradicular tissue response to mineral trioxide aggregate (MTA) as root-end filling material. Int Endod J. 2003;36:44–8. https://doi.org/10.1046/j.0143-2885.2003.00611.x DOI: https://doi.org/10.1046/j.0143-2885.2003.00611.x
Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Antibacterial effects of some root end filling materials. J Endod. 1995;21:403–6. https://doi.org/10.1016/S0099-2399(06)80824-1 DOI: https://doi.org/10.1016/S0099-2399(06)80824-1
Owadally ID, Chong BS, Pitt Ford TR, Wilson RF. Biological properties of IRM with the addition of hydroxyapatite as a retrograde root filling material. Endod Dent Traumatol. 1994;10:228–32. https://doi.org/10.1111/j.1600-9657.1994.tb00075.x DOI: https://doi.org/10.1111/j.1600-9657.1994.tb00075.x
Chong BS, Owadally ID, Pitt Ford TR, Wilson RF. Antibacterial activity of potential retrograde root filling materials. Endod Dent Traumatol. 1994;10:66–70. https://doi.org/10.1111/j.1600-9657.1994.tb00062.x DOI: https://doi.org/10.1111/j.1600-9657.1994.tb00062.x
Slutzky H, Slutzky-Goldberg I, Weiss EI, Matalon S. Antibacterial properties of temporary filling materials. J Endod. 2006;32:214–7. https://doi.org/10.1016/j.joen.2005.10.034 DOI: https://doi.org/10.1016/j.joen.2005.10.034
Dragland IS, Wellendorf H, Kopperud H, Stenhagen I, Valen H. Investigation on the antimicrobial activity of chitosan-modified zinc oxide-eugenol cement. Biomater Investig Dent. 2019;6:99–106. DOI: https://doi.org/10.1080/26415275.2019.1697621
Prestegaard H, Portenier I, Ørstavik D, Kayaoglu G, Haapasalo M, Endal U. Antibacterial activity of various root canal sealers and root-end filling materials in dentin blocks infected ex vivo with Enterococcus faecalis. Acta Odontol Scand. 2014;72:970–6. https://doi.org/10.3109/00016357.2014.931462 DOI: https://doi.org/10.3109/00016357.2014.931462
Koçak MM, Koçak S, Oktay EA, Kiliç A, Yaman SD. In vitro evaluation of the minimum bactericidal concentrations of different root-end filling materials. J Contemp Dent Pract. 2013;14:371–4. DOI: https://doi.org/10.5005/jp-journals-10024-1330
Wälivaara D, Abrahamsson P, Fogelin M, Isaksson S. Super-EBA and IRM as root-end fillings in periapical surgery with ultrasonic preparation: a prospective randomized clinical study of 206 consecutive teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:258–63. https://doi.org/10.1016/j.tripleo.2011.01.016 DOI: https://doi.org/10.1016/j.tripleo.2011.01.016
Wälivaara DA, Abrahamsson P, Sämfors KA, Isaksson S. Periapical surgery using ultrasonic preparation and thermoplasticized gutta-percha with AH Plus sealer or IRM as retrograde root-end fillings in 160 consecutive teeth: a prospective randomized clinical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:784–79. DOI: https://doi.org/10.1016/j.tripleo.2009.06.010
Lindeboom JA, Frenken JW, Kroon FH, van den Akker HP. A comparative prospective randomized clinical study of MTA and IRM as root-end filling materials in single-rooted teeth in endodontic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:495–500. https://doi.org/10.1016/j.tripleo.2005.03.027 DOI: https://doi.org/10.1016/j.tripleo.2005.03.027
Rubinstein RA, Kim S. Short-term observation of the results of endodontic surgery with the use of a surgical operation microscope and super-EBA as root-end filling material. J Endod. 1999;25:43–8. https://doi.org/10.1016/S0099-2399(99)80398-7 DOI: https://doi.org/10.1016/S0099-2399(99)80341-0
Song M, Kim E. A prospective randomized controlled study of mineral trioxide aggregate and super ethoxy-benzoic acid as root-end filling materials in endodontic microsurgery. J Endod. 2012;38:875–9. https://doi.org/10.1016/j.joen.2012.04.008 DOI: https://doi.org/10.1016/j.joen.2012.04.008
Chong BS, Pitt Ford TR, Hudson MB. A prospective clinical study of Mineral Trioxide Aggregate and IRM when used as root-end filling materials in endodontic surgery. Int Endod J. 2003;36:520–6. DOI: https://doi.org/10.1046/j.1365-2591.2003.00682.x
Rubinstein RA, Kim S. Long-term follow-up of cases considered healed one year after apical microsurgery. J Endod. 2002;28:378–83. DOI: https://doi.org/10.1097/00004770-200205000-00008
Kim S, Song M, Shin SJ, Kim E. A randomized controlled study of mineral trioxide aggregate and super ethoxybenzoic acid as root-end filling materials in endodontic microsurgery: long-term outcomes. J Endod. 2016;42:997–1002. https://doi.org/10.1016/j.joen.2016.04.008 DOI: https://doi.org/10.1016/j.joen.2016.04.008
Setzer FC, Kratchman SI. Present status and future directions: surgical endodontics. Int Endod J. 2022;55:1020–58. DOI: https://doi.org/10.1111/iej.13783
American Association of Endodontists. AAE position statement on vital pulp therapy. 2021 [cited 2024 Jun 10]. Available from: https://www.aae.org/wpcontent/uploads/2021/05/VitalPulpTherapyPositionStatement_v2.pdf
Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology. 2019;107:421–36. https://doi.org/10.1007/s10266-018-0400-3 DOI: https://doi.org/10.1007/s10266-018-0400-3
Darvell BW. Introduction. In: Camilleri J, editor. Endodontic materials in clinical practice. Hoboken: Wiley-Blackwell; 2021. p. 1–13. DOI: https://doi.org/10.1002/9781119513568.ch1
Camilleri J, Atmeh A, Li X, Meschi N. Present status and future directions – hydraulic materials for endodontic use. Int Endod J. 2022;55:710–77. https://doi.org/10.1111/iej.13709 DOI: https://doi.org/10.1111/iej.13709
Witte. The filling of a root canal with Portland cement. German Q. Dent J Central Assoc German Dent. 1878;18:153–4.
Torabinejad M, White JD. Tooth filling material and method of use. US Patent number: 5415547. 1993.
De Deus G, Camilleri J, Primus CM, Duarte MAH, Bramante CM. Introduction to mineral trioxide aggregate. In: Camilleri J, editor. Mineral trioxide aggregate in dentistry: from preparation to application. Berlin: Springer; 2014. p. 1–17. DOI: https://doi.org/10.1007/978-3-642-55157-4_1
Camilleri J. Mineral trioxide aggregate: present and future developments. Endod Top. 2015;32:31–46. https://doi.org/10.1111/etp.12073 DOI: https://doi.org/10.1111/etp.12073
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21:349–53. https://doi.org/10.1016/S0099-2399(06)80967-2 DOI: https://doi.org/10.1016/S0099-2399(06)80967-2
Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc. 1996;127:1491–4. https://doi.org/10.14219/jada.archive.1996.0058 DOI: https://doi.org/10.14219/jada.archive.1996.0058
Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod. 1995;21:603–8. DOI: https://doi.org/10.1016/S0099-2399(06)81112-X
Torabinejad M, Hong CU, Pitt Ford TR, Kaiyawasam SP. Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. J Endod. 1995;21:569–71. https://doi.org/10.1016/S0099-2399(06)80987-8 DOI: https://doi.org/10.1016/S0099-2399(06)80987-8
Ford TR, Torabinejad M, McKendry DJ, Hong CU, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:756–63. DOI: https://doi.org/10.1016/S1079-2104(05)80313-0
Arens DE, Torabinejad M. Repair of furcal perforations with mineral trioxide aggregate: two case reports. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:84–8. DOI: https://doi.org/10.1016/S1079-2104(96)80382-9
Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med. 2006;17:187–91. https://doi.org/10.1007/s10856-006-6823-3 DOI: https://doi.org/10.1007/s10856-006-6823-3
Massi S, Tanomaru-Filho M, Silva GF, Duarte MA, Grizzo LT, Buzalaf MA, Guerreiro-Tanomaru JM. pH, calcium ion release, and setting time of an experimental mineral trioxide aggregate-based root canal sealer. J Endod. 2011;37:844–6. https://doi.org/10.1016/j.joen.2011.02.033 DOI: https://doi.org/10.1016/j.joen.2011.02.033
Hashem AA, Hassanien EE. ProRoot MTA, MTA-Angelus and IRM used to repair large furcation perforations: sealability study. J Endod. 2008;34:59–61. https://doi.org/10.1016/j.joen.2007.09.007 DOI: https://doi.org/10.1016/j.joen.2007.09.007
Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40:462–70. DOI: https://doi.org/10.1111/j.1365-2591.2007.01248.x
Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J. 2008;41:408–17. https://doi.org/10.1111/j.1365-2591.2007.01370.x DOI: https://doi.org/10.1111/j.1365-2591.2007.01370.x
de Vasconcelos BC, Bernardes RA, Cruz SM, Duarte MA, Padilha Pde M, Bernardineli N, et al. Evaluation of pH and calcium ion release of new rootend filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:135–9. DOI: https://doi.org/10.1016/j.tripleo.2009.02.026
Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005;31:665–8. https://doi.org/10.1097/01.don.0000157993.89164.be DOI: https://doi.org/10.1097/01.don.0000157993.89164.be
Marciano MA, Costa RM, Camilleri J, Mondelli RF, Guimarães BM, Duarte MA. Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod. 2014;40:1235–40. DOI: https://doi.org/10.1016/j.joen.2014.01.044
Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt Ford TR. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod. J. 2004;37:699–704. DOI: https://doi.org/10.1111/j.1365-2591.2004.00859.x
Min KS, Chang HS, Bae JM, Park SH, Hong CU, Kim EC. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. J Endod. 2007;33:1342–6. https://doi.org/10.1016/j.joen.2007.07.012 DOI: https://doi.org/10.1016/j.joen.2007.07.012
Angelus Dental Products Industry. MTA Angelus; 2021 [cited 2024 Jun 10]. Available from: https://angelus.ind.br/assets/uploads/2019/12/27102021-MTA-ANGELUS-Bula.pdf
Pistorius A, Willershausen B, Briseno Marroquin B. Effect of apical root-end filling materials on gingival fibroblasts. Int Endod J. 2003;36:610–5. DOI: https://doi.org/10.1046/j.1365-2591.2003.00698.x
Damas BA, Wheater MA, Bringas JS, Hoen MM. Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J Endod. 2011;37:372–5. https://doi.org/10.1016/j.joen.2010.11.027 DOI: https://doi.org/10.1016/j.joen.2010.11.027
Samyuktha VN, Venkatesh V, Kattula D, Wilson BP, Ravan JR.Cytotoxicity evaluation of root repair materials in humancultured periodontal ligament fibroblasts. J Conserv Dent. 2014;17:467–70. DOI: https://doi.org/10.4103/0972-0707.139844
Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Portland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:e54–7. DOI: https://doi.org/10.1016/j.tripleo.2007.08.001
Margunato S, Tasli PN, Aydin S, Karapinar Kazandag M, Sahin F. In vitro evaluation of ProRoot MTA, Biodentine, and MM-MTA on human alveolar bone marrow stem cells in terms of biocompatibility and mineralization. J Endod. 2015;41:1646–52. https://doi.org/10.1016/j.joen.2015.05.012 DOI: https://doi.org/10.1016/j.joen.2015.05.012
Karygianni L, Proksch S, Schneider S, Vach K, Hellwig E, Steinberg T, et al. The effects of various mixing solutions on the biocompatibility of mineral trioxide aggregate. Int Endod J. 2016;49:561–73. DOI: https://doi.org/10.1111/iej.12483
Sequeira DB, Seabra CM, Palma PJ, Cardoso AL, Peça J, Santos JM. Effects of a new bioceramic material on human apical papilla cells. J. Funct Biomater. 2018;16:9. https://doi.org/10.3390/jfb9040074 DOI: https://doi.org/10.3390/jfb9040074
Costa F, Sousa Gomes P, Fernandes MH. Osteogenic and angiogenic response to calcium silicate-based endodontic sealers. J Endod. 2016;42:113–9. DOI: https://doi.org/10.1016/j.joen.2015.09.020
Lee GW, Yoon JH, Jang JH, Chang HS, Hwang YC, Hwang IN, et al. Effects of newly-developed retrograde filling material on osteoblastic differentiation in vitro. Dent Mater J. 2019;38:528–33. https://doi.org/10.4012/dmj.2018-124 DOI: https://doi.org/10.4012/dmj.2018-124
Lee BN, Kim HJ, Chang HS, Hwang IN, Oh WM, Kim JW, et al. Effects of mineral trioxide aggregate mixed with hydration accelerators on osteoblastic differentiation. J Endod. 2014;40:2019–23. DOI: https://doi.org/10.1016/j.joen.2014.08.014
Scelza MZ, Nascimento JC, Silva LED, Gameiro VS, DE Deus G, Alves G. BiodentineTM is cytocompatible with human primary osteoblasts. Braz Oral Res. 2017;31:e81. https://doi.org/10.1590/1807-3107bor-2017.vol31.0081 DOI: https://doi.org/10.1590/1807-3107bor-2017.vol31.0081
Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res. 1997;37:432–9. https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod. 1998;24:543–7. DOI: https://doi.org/10.1016/S0099-2399(98)80074-5
Deller-Quinn M, Perinpanayagam H. Osteoblast expression of cytokines is altered on MTA surfaces. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:302–7. https://doi.org/10.1016/j.tripleo.2009.03.044 DOI: https://doi.org/10.1016/j.tripleo.2009.03.044
Chen I, Salhab I, Setzer FC, Kim S, Nah HD. A new calcium silicate-based bioceramic material promotes human osteo- and odontogenic stem cell proliferation and survival via the extracellular signal-regulated kinase signaling pathway. J Endod. 2016;42:480–6. https://doi.org/10.1016/j.joen.2015.11.013 DOI: https://doi.org/10.1016/j.joen.2015.11.013
Lee BN, Lee KN, Koh JT, Min KS, Chang HS, Hwang IN, et al. Effects of 3 endodontic bioactive cements on osteogenic differentiation in mesenchymal stem cells. J Endod. 2014;40:1217–22. DOI: https://doi.org/10.1016/j.joen.2014.01.036
Edrees HY, Abu Zeid STH, Atta HM, AlQriqri MA. Induction of osteogenic differentiation of mesenchymal stem cells by bioceramic root repair material. Materials (Basel). 2019;12:2311. https://doi.org/10.3390/ma12142311 DOI: https://doi.org/10.3390/ma12142311
Cintra LT, Bernabé PF, de Moraes IG, Gomes-Filho JE, Okamoto T, Consolaro A, Pinheiro TN. Evaluation of subcutaneous and alveolar implantation surgical sites in the study of the biological properties of root-end filling endodontic materials. J Appl Oral Sci. 2010;18:75–82. DOI: https://doi.org/10.1590/S1678-77572010000100013
Aguilar FG, Roberti Garcia LF, Panzeri Pires-de-Souza FC. Biocompatibility of new calcium aluminate cement (EndoBinder). J Endod. 2012;38:367–71. DOI: https://doi.org/10.1016/j.joen.2011.11.002
Mori GG, Teixeira LM, de Oliveira DL, Jacomini LM,da Silva SR. Biocompatibility evaluation of biodentine in subcutaneous tissue of rats. J Endod. 2014;40:1485–8. https://doi.org/10.1016/j.joen.2014.02.027 DOI: https://doi.org/10.1016/j.joen.2014.02.027
Garcia Lda F, Huck C, Menezes de Oliveira L, de Souza PP, de Souza Costa CA. Biocompatibility of new calcium aluminate cement: tissue reaction and expression of inflammatory mediators and cytokines. J Endod. 2014;40:2024–9. DOI: https://doi.org/10.1016/j.joen.2014.08.015
Gomes-Filho JE, de Azevedo Queiroz ÍO, Watanabe S, da Silva Santos LM, Lodi CS, Okamoto R, et al. Influence of diabetes mellitus on tissue response to MTA and its ability to stimulate mineralization. Dental Traumatol. 2015;31:67–72. https://doi.org/10.1111/edt.12130 DOI: https://doi.org/10.1111/edt.12130
Silva GF, Tanomaru-Filho M, Bernardi MI, Guerreiro-Tanomaru JM, Cerri PS. Niobium pentoxide as radiopacifying agent of calcium silicate-based material: evaluation of physicochemical and biological properties. Clin Oral Investig. 2015;19:2015–25. DOI: https://doi.org/10.1007/s00784-015-1412-9
Marciano MA, Guimaraes BM, Amoroso-Silva P, Camilleri J, Hungaro Duarte MA. Physical and chemical properties and subcutaneous implantation of mineral trioxide aggregate mixed with propylene glycol. J Endod. 2016;42:474–9. https://doi.org/10.1016/j.joen.2015.10.014 DOI: https://doi.org/10.1016/j.joen.2015.10.014
da Fonseca TS, da Silva GF, Tanomaru-Filho M, Sasso-Cerri E, Guerreiro-Tanomaru JM, Cerri PS. In vivo evaluation of the inflammatory response and IL-6 immunoexpression promoted by Biodentine and MTA Angelus. Int Endod J. 2016;49:145–53. DOI: https://doi.org/10.1111/iej.12435
Taha NA, Safadi RA, Alwedaie MS. Biocompatibility evaluation of EndoSequence root repair paste in the connective tissue of rats. J Endod. 2016;42:1523–8. DOI: https://doi.org/10.1016/j.joen.2016.07.017
Khalil WA, Abunasef SK. Can Mineral trioxide aggregate and nanoparticulate EndoSequence root repair material produce injurious effects to rat subcutaneous tissues? J Endod. 2015;41:1151–6. https://doi.org/10.1016/j.joen.2015.02.034 DOI: https://doi.org/10.1016/j.joen.2015.02.034
Moretton TR, Brown CE, Jr, Legan JJ, Kafrawy AH. Tissue reactions after subcutaneous and intraosseous implantation of mineral trioxide aggregate and ethoxybenzoic acid cement. J Biomed Mater Res. 2000;52:528–33. DOI: https://doi.org/10.1002/1097-4636(20001205)52:3<528::AID-JBM11>3.0.CO;2-9
Sousa CJ, Loyola AM, Versiani MA, Biffi JC, Oliveira RP, Pascon EA. A comparative histological evaluation of the biocompatibility of materials used in apical surgery. Int Endod J. 2004;37:738–48. https://doi.org/10.1111/j.1365-2591.2004.00861.x DOI: https://doi.org/10.1111/j.1365-2591.2004.00861.x
da Fonseca TS, Silva GF, Guerreiro-Tanomaru JM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Mast cells and immunoexpression of FGF-1 and Ki-67 in rat subcutaneous tissue following the implantation of Biodentine and MTA Angelus. Int Endod J. 2019;52:54–67. DOI: https://doi.org/10.1111/iej.12981
Dreger LA, Felippe WT, Reyes-Carmona JF, Felippe GS, Bortoluzzi EA, Felippe MC. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo. J Endod. 2012;38:324–9. https://doi.org/10.1016/j.joen.2011.11.006 DOI: https://doi.org/10.1016/j.joen.2011.11.006
Reyes-Carmona JF, Santos AS, Figueiredo CP, Baggio CH, Felippe MC, Felippe WT, Cordeiro MM. Host-mineral trioxide aggregate inflammatory molecular signaling and biomineralization ability. J Endod. 2010;36:1347–53. DOI: https://doi.org/10.1016/j.joen.2010.04.029
Chen I, Karabucak B, Wang C, Wang HG, Koyama E, Kohli MR, et al. Healing after root-end microsurgery by using mineral trioxide aggregate and a new calcium silicate-based bioceramic material as root-end filling materials in dogs. J Endod. 2015;41:389–99. DOI: https://doi.org/10.1016/j.joen.2014.11.005
Alazrag MA, Abu-Seida AM, El-Batouty KM, El Ashry SH. Marginal adaptation, solubility and biocompatibility of TheraCal LC compared with MTA angelus and biodentine as a furcation perforation repair material. BMC Oral Health. 2020;20:298. https://doi.org/10.1186/s12903-020-01289-y DOI: https://doi.org/10.1186/s12903-020-01289-y
Abboud KM, Abu-Seida AM, Hassanien EE, Tawfik HM. Biocompatibility of NeoMTA Plus® versus MTA Angelus as delayed furcation perforation repair materials in a dog model. BMC Oral Health. 2021;21:192. https://doi.org/10.1186/s12903-021-01552-w DOI: https://doi.org/10.1186/s12903-021-01552-w
Bakhtiar H, Mirzaei H, Bagheri MR, Fani N, Mashhadiabbas F, Baghaban Eslaminejad M, et al. Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate. Clin Oral Investig. 2017;21:1579–88. DOI: https://doi.org/10.1007/s00784-016-1967-0
Silva Neto JD, Schnaider TB, Gragnani A, Paiva AP, Novo NF, Ferreira LM. Portland cement with additives in the repair of furcation perforations in dogs. Acta Cir Bras. 2012;27:809–14. https://doi.org/10.1590/S0102-86502012001100011 DOI: https://doi.org/10.1590/S0102-86502012001100011
ilva LAB, Pieroni KAMG, Nelson-Filho P, Silva RAB, Hernandéz-Gatón P, Lucisano MP, et al. Furcation perforation: periradicular tissue response to Biodentine as a repair material by histopathologic and indirect immunofluorescence analyses. J Endod. 2017;43:1137–42. DOI: https://doi.org/10.1016/j.joen.2017.02.001
Cardoso M, Dos Anjos Pires M, Correlo V, Reis R, Paulo M, Viegas C. Biodentine for furcation perforation repair: an animal study with histological, radiographic and micro-computed tomographic assessment. Iran Endod J. 2018;13:323–30.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review – part I: chemical, physical, and antibacterial properties. J Endod. 2010;36:16–27. https://doi.org/10.1016/j.joen.2009.09.006 DOI: https://doi.org/10.1016/j.joen.2009.09.006
Alsalleeh F, Chung N, Stephenson L. Antifungal activity of endosequence root repair material and mineral trioxide aggregate. J Endod. 2014;40:1815–9. DOI: https://doi.org/10.1016/j.joen.2014.08.002
Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, Seymen F. An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: an in vitro study. Eur J Dent. 2015;9:240–5. DOI: https://doi.org/10.4103/1305-7456.156837
Al-Nazhan S, Al-Judai A. Evaluation of antifungal activity of mineral trioxide aggregate. J Endod. 2003;29:826–7. DOI: https://doi.org/10.1097/00004770-200312000-00010
Farrugia C, Baca P, Camilleri J, Arias Moliz MT. Antimicrobial activity of ProRoot MTA in contact with blood. Sci Rep. 2017;7:41359. https://doi.org/10.1038/srep41359 DOI: https://doi.org/10.1038/srep41359
Damlar I, Ozcan E, Yula E, Yalcin M, Celik S. Antimicrobial effects of several calcium silicate-based root-end filling materials. Dent Mater J. 2014;33:453–7. DOI: https://doi.org/10.4012/dmj.2013-250
Lovato KF, Sedgley CM. Antibacterial activity of endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J Endod. 2011;37:1542–6. https://doi.org/10.1016/j.joen.2011.06.022 DOI: https://doi.org/10.1016/j.joen.2011.06.022
Jardine AP, Montagner F, Quintana RM, Zaccara IM, Kopper PMP. Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: a confocal laser microscopy study. Clin Oral Investig. 2018;23:1367–72. DOI: https://doi.org/10.1007/s00784-018-2551-6
Wang Z. Bioceramic materials in endodontics. Endod Top. 2015;32:3–30. DOI: https://doi.org/10.1111/etp.12075
Saunders WP. A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling. J Endod. 2008;34:660–5. https://doi.org/10.1016/j.joen.2008.03.002 DOI: https://doi.org/10.1016/j.joen.2008.03.002
Zhou W, Zheng Q, Tan X, Song D, Zhang L, Huang D. Comparison of Mineral trioxide aggregate and iRoot BP plus root repair material as root-end filling materials in endodontic microsurgery: a prospective randomized controlled study. J Endod. 2017;43:1–6. https://doi.org/10.1016/j.joen.2016.10.010 DOI: https://doi.org/10.1016/j.joen.2016.10.010
Safi C, Kohli MR, Kratchman SI, Setzer FC, Karabucak B. Outcome of endodontic microsurgery using Mineral trioxide aggregate or Root repair material as root-end filling material: a randomized controlled trial with cone-beam computed tomographic evaluation. J Endod. 2019;45:831–9. DOI: https://doi.org/10.1016/j.joen.2019.03.014
Shinbori N, Grama AM, Patel Y, Woodmansey K, He J. Clinical outcome of endodontic microsurgery that uses EndoSequence BC root repair material as the root-end filling material. J Endod. 2015;41:607–12. https://doi.org/10.1016/j.joen.2014.12.028 DOI: https://doi.org/10.1016/j.joen.2014.12.028
Ghoddusi J, Sanaan A, Shahrami F. Clinical and radiographic evaluation of root perforation repair using MTA. N Y State Dent J. 2007;73:46–9.
Schembri M, Peplow G, Camilleri J. Analyses of heavy metals in Mineral trioxide aggregate and Portland cement. J Endod. 2010;36:1210–5. DOI: https://doi.org/10.1016/j.joen.2010.02.011
Kum KY, Zhu Q, Safavi K, Gu Y, Bae KS, Chang SW. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry. Aust Endod J. 2013;39:126–30. https://doi.org/10.1111/j.1747-4477.2012.00349.x DOI: https://doi.org/10.1111/j.1747-4477.2012.00349.x
Demirkaya K, Can Demirdöğen B, Öncel Torun Z, Erdem O, Çetinkaya S, Akay C. In vivo evaluation of the effects of hydraulic calcium silicate dental cements on plasma and liver aluminium levels in rats. Eur J Oral Sci. 2016;124:75–81. DOI: https://doi.org/10.1111/eos.12238
Simsek N, Bulut ET, Ahmetoğlu F, Alan H. Determination of trace elements in rat organs implanted with endodontic repair materials by ICP-MS. J Mater Sci Mater Med. 2016;27:46. https://doi.org/10.1007/s10856-015-5663-4 DOI: https://doi.org/10.1007/s10856-015-5663-4
Demirkaya K, Demirdöğen BC, Torun ZÖ, Erdem O, Çırak E, Tunca YM. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements. Hum Exp Toxicol. 2017;36:1071–80. DOI: https://doi.org/10.1177/0960327116679713
Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater. 2011;27:836–44. https://doi.org/10.1016/j.dental.2011.04.010 DOI: https://doi.org/10.1016/j.dental.2011.04.010
Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013;29:580–93. https://doi.org/10.1016/j.dental.2013.03.007 DOI: https://doi.org/10.1016/j.dental.2013.03.007
Quanzu Yang DL. Premixed biological hydraulic cement paste composition and using the same. US Patent number: 20080299.093A1. 2008
Septodont. Biodentine − active biosilicate technology. 2009 [cited 2024 Jun 10]. Available from: https://www.septodontusa.com/wp-content/uploads/2022/11/Biodentine-IFU.pdf?x92757
Grech L, Mallia B, Camilleri J. Characterization of set intermediate restorative material, biodentine, bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J. 2013;46:632–41. DOI: https://doi.org/10.1111/iej.12039
Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013;29:e20–8. https://doi.org/10.1016/j.dental.2012.11.007 DOI: https://doi.org/10.1016/j.dental.2012.11.007
Tang JJ, Shen ZS, Qin W, Lin Z. A comparison of the sealing abilities between Biodentine and MTA as root-end filling materials and their effects on bone healing in dogs after periradicular surgery. J Appl Oral Sci. 2019;27:e20180693. https://doi.org/10.1590/1678-7757-2018-0693 DOI: https://doi.org/10.1590/1678-7757-2018-0693
Gomes-Cornélio AL, Rodrigues EM, Salles LP, Mestieri LB, Faria G, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells. Int Endod J. 2017;50:39–47. https://doi.org/10.1111/iej.12589 DOI: https://doi.org/10.1111/iej.12589
Corral Nuñez CM, Bosomworth HJ, Field C, Whitworth JM, Valentine RA. Biodentine and Mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line. J Endod. 2014;40:406–11. https://doi.org/10.1016/j.joen.2013.11.006 DOI: https://doi.org/10.1016/j.joen.2013.11.006
Rodrigues EM, Gomes-Cornélio AL, Soares-Costa A, Salles LP, Velayutham M, Rossa-Junior C, et al. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine. Int Endod J. 2017;50:e9–18. DOI: https://doi.org/10.1111/iej.12745
Kim HS, Kim S, Ko H, Song M, Kim M. Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity. Restor Dent Endod. 2019;44:e17. DOI: https://doi.org/10.5395/rde.2019.44.e17
de Sousa Reis M, Scarparo RK, Steier L, de Figueiredo JAP. Periradicular inflammatory response, bone resorption, and cementum repair after sealing of furcation perforation with mineral trioxide aggregate (MTA Angelus™) or Biodentine™. Clin Oral Investig. 2019;23:4019–27. https://doi.org/10.1007/s00784-019-02833-z DOI: https://doi.org/10.1007/s00784-019-02833-z
da Fonseca TS, Silva GF, Guerreiro-Tanomaru JM, Delfino MM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Biodentine and MTA modulate immunoinflammatory response favoring bone formation in sealing of furcation perforations in rat molars. Clin Oral Investig. 2019;23:1237–52. DOI: https://doi.org/10.1007/s00784-018-2550-7
Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, Visai L. Cytocompatibility and antibacterial properties of capping materials. ScientificWorldJournal. 2014;2014:181945. DOI: https://doi.org/10.1155/2014/181945
Poggio C, Beltrami R, Colombo M, Ceci M, Dagna A, Chiesa M. In vitro antibacterial activity of different pulp capping materials. J Clin Exp Dent. 2015;7:e584–8. DOI: https://doi.org/10.4317/jced.52401
Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB. Evaluation of antibacterial and antifungal activity of new calciumbased cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent. 2015;18:44–6. https://doi.org/10.4103/0972-0707.148892 DOI: https://doi.org/10.4103/0972-0707.148892
Ozyurek T, Demiryurek EO. Comparison of the antimicrobial activity of direct pulp-capping materials: mineral trioxide aggregate-Angelus and Biodentine. J Conserv Dent. 2016;19:569–72. https://doi.org/10.4103/0972-0707.194018 DOI: https://doi.org/10.4103/0972-0707.194018
Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFA, Zaia AA, et al. Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Investig. 2021;25:663–72. DOI: https://doi.org/10.1007/s00784-020-03543-7
Farrugia C, Lung CYK, Schembri Wismayer P, Arias-Moliz MT, Camilleri J. The relationship of surface characteristics and antimicrobial performance of pulp capping materials. J Endod. 2018;44:1115–20. DOI: https://doi.org/10.1016/j.joen.2018.04.002
Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J. Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent. 2017;64:45–51. https://doi.org/10.1016/j.jdent.2017.06.006 DOI: https://doi.org/10.1016/j.jdent.2017.06.006
Kato G, Gomes PS, Neppelenbroek KH, Rodrigues C, Fernandes MH, Grenho L. Fast-setting calcium silicate-based pulp capping cements-integrated antibacterial, irritation and cytocompatibility assessment. Materials (Basel). 2023;16:450. DOI: https://doi.org/10.3390/ma16010450
Koutroulis A, Kuehne SA, Cooper PR, Camilleri J. The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep. 2019;9:19019. https://doi.org/10.1038/s41598-019-55288-3 DOI: https://doi.org/10.1038/s41598-019-55288-3
Caron G, Azérad J, Faure MO, Machtou P, Boucher Y. Use of a new retrograde filling material (Biodentine) for endodontic surgery: two case reports. Int J Oral Sci. 2014;6:250–3. DOI: https://doi.org/10.1038/ijos.2014.25
Pawar AM, Kokate SR, Shah RA. Management of a large periapical lesion using Biodentine(™) as retrograde restoration with eighteen months evident follow up. J Conserv Dent. 2013;16:573–5. https://doi.org/10.4103/0972-0707.120934 DOI: https://doi.org/10.4103/0972-0707.120934
Tirone F, Salzano S, Piattelli A, Perrotti V, Iezzi G. Response of periodontium to mineral trioxide aggregate and Biodentine: a pilot histological study on humans. Aust Dent J. 2018;63:231–41. DOI: https://doi.org/10.1111/adj.12605
FKG Dentaire. TotalFill BC root repair material safety data sheet. 2023 [cited 2024 Jun 10]. Available from: https://www.fkg.ch/sites/default/files/FKG_TotalFill%20BC%20RRM_IBC_Safety%20data%20sheet_20230815.pdf
Brasseler USA. Endosequence root repair material − instructions for use. 2009 [cited 2024 Jan 10]. Available from: http://brasselerusadental.com/wp-content/uploads/sites/9/2015/03/B_3238A_RRMDFU.pdf
Zamparini F, Siboni F, Prati C, Taddei P, Gandolfi MG. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide. Clin Oral Investig. 2019;23:445–57. DOI: https://doi.org/10.1007/s00784-018-2453-7
Guo YJ, Du TF, Li HB, Shen Y, Mobuchon C, Hieawy A, et al.Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC Oral Health. 2016;16:23. https://doi.org/10.1186/s12903-016-0184-1 DOI: https://doi.org/10.1186/s12903-016-0184-1
Lv F, Zhu L, Zhang J, Yu J, Cheng X, Peng B. Evaluation of the in vitro biocompatibility of a new fast-setting ready-to-use root filling and repair material. Int Endod J. 2017;50:540–8. DOI: https://doi.org/10.1111/iej.12661
Mahmood Talabani R, Taha Garib B, Masaeli R. The response of the pulpdentine complex, pdl, and bone to three calcium silicate-based cements: a histological study in an animal rat Model. Bioinorg Chem Appl. 2020;13:9582165. https://doi.org/10.1155/2020/9582165 DOI: https://doi.org/10.1155/2020/9582165
About I. Biodentine™: properties and clinical applications. Springer; 2021. DOI: https://doi.org/10.1007/978-3-030-80932-4
Barone C, Dao TT, Basrani BB, Wang N, Friedman S. Treatment outcome in endodontics: the Toronto study – phases 3, 4, and 5: apical surgery. J Endod. 2010;36:28–35. https://doi.org/10.1016/j.joen.2009.09.001 DOI: https://doi.org/10.1016/j.joen.2009.09.001
Cardinali F, Camilleri J. A critical review of the material properties guiding the clinician’s choice of root canal sealers. Clin Oral Investig. 2023;27:4147–55. https://doi.org/10.1007/s00784-023-05140-w DOI: https://doi.org/10.1007/s00784-023-05140-w
Published
Issue
Section
Categories
License
Copyright (c) 2024 Andreas Koutroulis, Vasileios Kapralos, Dag Ørstavik, Pia Titterud Sunde
This work is licensed under a Creative Commons Attribution 4.0 International License.