Cognitive load in individuals with a transfemoral amputation during single- and dual-task walking: a pilot study of brain activity in people using a socket prosthesis or a bone-anchored prosthesis

Authors

  • Saffran Möller Department of Rehabilitation, School of Health and Welfare, Jönköping University, Sweden
  • Kerstin Hagberg Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Swede
  • Nerrolyn Ramstrand Department of Rehabilitation, School of Health and Welfare, Jönköping University, Sweden

DOI:

https://doi.org/10.2340/jrm.v56.40111

Keywords:

Attention, limb prosthesis, neuroimaging, osseointegration

Abstract

Objective: To explore cognitive load in people with transfemoral amputations fitted with socket or bone-anchored prostheses by describing activity in the left and right dorsolateral prefrontal cortices during single- and dual-task walking.

Design: Cross-sectional pilot study.

Patients: 8 socket prosthesis users and 8 bone-anchored prosthesis users. All were fitted with microprocessor-controlled prosthetic knees.

Methods: Participants answered self-report questionnaires and performed gait tests during 1 single-task walking condition and 2 dual-task walking conditions. While walking, activity in the dorsolateral prefrontal cortex was measured using functional near-infrared spectroscopy. Cognitive load was investigated for each participant by exploring the relative concentration of oxygenated haemoglobin in the left and right dorsolateral prefrontal cortex. Symmetry of brain activity was investigated by calculating a laterality index.

Results: Self-report measures and basic gait variables did not show differences between the groups.

No obvious between-group differences were observed in the relative concentration of oxygenated haemoglobin for any walking condition. There was a tendency towards more right-side brain activity for participants using a socket prosthesis during dual-task conditions.

Conclusions: This pilot study did not identify substantial differences in cognitive load or lateralization between socket prosthesis users and bone-anchored prosthesis users.

Downloads

Download data is not yet available.

References

Horak FB. Postural control. In: Binder MD, Hirokawa N, Windhorst U, editors. Encyclope-dia of Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009: p. 3212-3219.

https://doi.org/10.1007/978-3-540-29678-2_4708 DOI: https://doi.org/10.1007/978-3-540-29678-2_4708

Sturm V, Haase CM, Levenson RW. Emotional dysfunction in psychopathology and neu-ropathology: neural and genetic pathways. In: Lehner T, Miller BL, State MW, editors. Ge-nomics, circuits, and pathways in clinical neuropsychiatry. Cambridge, MA: Elsevier Aca-demic Press. p. 345-364.

https://doi.org/10.1016/B978-0-12-800105-9.00022-6 DOI: https://doi.org/10.1016/B978-0-12-800105-9.00022-6

Rudner M, Lunner T, Behrens T, Thorén ES, Rönnberg J. Working memory capacity may influence perceived effort during aided speech recognition in noise. J Am Acad Audiol 2012; 23: 577-589.

https://doi.org/10.3766/jaaa.23.7.7 DOI: https://doi.org/10.3766/jaaa.23.7.7

Aben B, Buc Calderon C, Van den Bussche E, Verguts T. Cognitive effort modulates con-nectivity between dorsal anterior cingulate cortex and task-relevant cortical areas. J Neu-rosci 2020; 40: 3838-3848.

https://doi.org/10.1523/JNEUROSCI.2948-19.2020 DOI: https://doi.org/10.1523/JNEUROSCI.2948-19.2020

Maikos JT, Chomack JM, Loan JP, Bradley KM, D'Andrea SE. Effects of prosthetic socket design on residual femur motion using dynamic stereo X-ray: a preliminary analysis. Front Bioeng Biotechnol 2021; 9: 697651.

https://doi.org/10.3389/fbioe.2021.697651 DOI: https://doi.org/10.3389/fbioe.2021.697651

Li Y, Felländer-Tsai L. The bone anchored prostheses for amputees: historical develop-ment, current status, and future aspects. Biomaterials 2021; 273: 120836.

https://doi.org/10.1016/j.biomaterials.2021.120836 DOI: https://doi.org/10.1016/j.biomaterials.2021.120836

Gailey RS, Kristal A, Al Muderis M, Lučarević J, Clemens S, Applegate EB, et al. Comparison of prosthetic mobility and balance in transfemoral amputees with bone-anchored pros-thesis vs. socket prosthesis. Prosthet Orthot Int 2023; 47: 130-136.

https://doi.org/10.1097/PXR.0000000000000189 DOI: https://doi.org/10.1097/PXR.0000000000000189

Ranaldi S, Naaim A, Marchis C, Robert T, Dumas R, Conforto S, et al. Walking ability of in-dividuals fitted with transfemoral bone-anchored prostheses: a comparative study of gait parameters. Clin Rehabil 2023; 37: 1670-1683.

https://doi.org/10.1177/02692155231183779 DOI: https://doi.org/10.1177/02692155231183779

Gaffney BMM, Davis-Wilson HC, Christiansen CL, Awad ME, Lev G, Tracy J, et al. Osseoin-tegrated prostheses improve balance and balance confidence in individuals with unilat-eral transfemoral limb loss. Gait Posture 2023; 100: 132-138.

https://doi.org/10.1016/j.gaitpost.2022.12.011 DOI: https://doi.org/10.1016/j.gaitpost.2022.12.011

Orgel M, Elareibi M, Graulich T, Krettek C, Neunaber C, Aschoff HH, et al. Osseoperception in transcutaneous osseointegrated prosthetic systems (TOPS) after transfemoral ampu-tation: a prospective study. Arch Orthop Trauma Surg 2023; 143: 603-610.

https://doi.org/10.1007/s00402-021-04099-1 DOI: https://doi.org/10.1007/s00402-021-04099-1

Moller S, Rusaw D, Hagberg K, Ramstrand N. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. Prosthet Orthot Int 2019; 43: 257-265.

https://doi.org/10.1177/0309364618805260 DOI: https://doi.org/10.1177/0309364618805260

Kahya M, Moon S, Ranchet M, Vukas RR, Lyons KE, Pahwa R, et al. Brain activity during du-al task gait and balance in aging and age-related neurodegenerative conditions: a sys-tematic review. Exp Gerontol 2019; 128: 110756.

https://doi.org/10.1016/j.exger.2019.110756 DOI: https://doi.org/10.1016/j.exger.2019.110756

St George RJ, Hinder MR, Puri R, Walker E, Callisaya ML. Functional near-infrared spec-troscopy reveals the compensatory potential of pre-frontal cortical activity for standing balance in young and older adults. Neuroscience 2021; 452: 208-218.

https://doi.org/10.1016/j.neuroscience.2020.10.027 DOI: https://doi.org/10.1016/j.neuroscience.2020.10.027

Pelicioni PHS, Tijsma M, Lord SR, Menant J. Prefrontal cortical activation measured by fNIRS during walking: effects of age, disease and secondary task. PeerJ 2019; 7: e6833.

https://doi.org/10.7717/peerj.6833 DOI: https://doi.org/10.7717/peerj.6833

Palmqvist S, Hansson O, Minthon L, Londos E. Practical suggestions on how to differen-tiate dementia with Lewy bodies from Alzheimer's disease with common cognitive tests. Int J Geriatr Psychiatry 2009; 24: 1405-1412.

https://doi.org/10.1002/gps.2277 DOI: https://doi.org/10.1002/gps.2277

Ting A, Edwards LB. Human leukocyte antigen in the allocation of kidneys from cadaveric donors in the United States. Transplantation 2004; 77: 610-614.

https://doi.org/10.1097/01.TP.0000103724.27166.AD DOI: https://doi.org/10.1097/01.TP.0000103724.27166.AD

Powell LE, Myers AM. The Activities-specific balance confidence (ABC) scale. J Gerontol A Biol Sci Med Sci 1995; 50a: M28-34.

https://doi.org/10.1093/gerona/50A.1.M28 DOI: https://doi.org/10.1093/gerona/50A.1.M28

Hafner BJ, Morgan SJ, Askew RL, Salem R. Psychometric evaluation of self-report outcome measures for prosthetic applications. J Rehabil Res Dev 2016; 53: 797-812.

https://doi.org/10.1682/JRRD.2015.12.0228 DOI: https://doi.org/10.1682/JRRD.2015.12.0228

Howard CL, Wallace CT, Rock M, Stokic DS. Dual task gait analysis in prosthesis users. Paper presented at the 39th Academy Annual Meeting and Scientific Symposium, Ameri-can Academy of Orthotists & Prosthetists 2013.

Yamada M, Ichihashi N. Predicting the probability of falls in community-dwelling elderly individuals using the trail-walking test. Environ Health Prev Med 2010; 15: 386-391.

https://doi.org/10.1007/s12199-010-0154-1 DOI: https://doi.org/10.1007/s12199-010-0154-1

Möller S, Ramstrand N, Hagberg K, Rusaw D. Cortical brain activity in transfemoral or knee-disarticulation prosthesis users performing single- and dual-task walking activi-ties. J Rehabil Assist Technol Eng 2020; 7: 2055668320964109.

https://doi.org/10.1177/2055668320964109 DOI: https://doi.org/10.1177/2055668320964109

Reid L, Thomson P, Besemann M, Dudek N. Going places: does the two-minute walk test predict the six-minute walk test in lower extremity amputees? J Rehabil Med 2015; 47: 256-261.

https://doi.org/10.2340/16501977-1916 DOI: https://doi.org/10.2340/16501977-1916

Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage 2004; 21: 99-111.

https://doi.org/10.1016/j.neuroimage.2003.08.026 DOI: https://doi.org/10.1016/j.neuroimage.2003.08.026

Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 2001; 112: 713-719.

https://doi.org/10.1016/S1388-2457(00)00527-7 DOI: https://doi.org/10.1016/S1388-2457(00)00527-7

Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise cognition science: a systematic, methodology-focused review. J Clin Med 2018; 7.

https://doi.org/10.3390/jcm7120466 DOI: https://doi.org/10.3390/jcm7120466

Hoshi Y. Hemodynamic signals in fNIRS. Prog Brain Res 2016; 225: 153-179.

https://doi.org/10.1016/bs.pbr.2016.03.004 DOI: https://doi.org/10.1016/bs.pbr.2016.03.004

Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 2014; 85 Pt 1: 64-71.

https://doi.org/10.1016/j.neuroimage.2013.06.062 DOI: https://doi.org/10.1016/j.neuroimage.2013.06.062

Baker WB, Parthasarathy AB, Busch DR, Mesquita RC, Greenberg JH, Yodh AG. Modified Beer-Lambert law for blood flow. Biomed Opt Express 2014; 5: 4053-4075.

https://doi.org/10.1364/BOE.5.004053 DOI: https://doi.org/10.1364/BOE.5.004053

Borrell JA, Fraser K, Manattu AK, Zuniga JM. Laterality index calculations in a control study of functional near infrared spectroscopy. Brain Topogr 2023; 36: 210-222.

https://doi.org/10.1007/s10548-023-00942-3 DOI: https://doi.org/10.1007/s10548-023-00942-3

Wang Q, Dai W, Xu S, Zhu S, Sui Y, Kan C, et al. Brain activation of the PFC during dual-task walking in stroke patients: a systematic review and meta-analysis of functional near-infrared spectroscopy studies. Front Neurosci 2023; 17: 1111274.

https://doi.org/10.3389/fnins.2023.1111274 DOI: https://doi.org/10.3389/fnins.2023.1111274

Tong L. Evaluation of different brain imaging technologies. In: Khalil R. Viti C, Cui MY, Ha-kobyan H, editors. Proceedings of the 2021 International Conference on Public Art and Human Development (ICPAHD 2021), Advances in Social Science, Education and Huma-nities Research series. London: Atlantis Press/Springer Nature; 2021. p. 692-696.

https://doi.org/10.2991/assehr.k.220110.132 DOI: https://doi.org/10.2991/assehr.k.220110.132

Kooiman V, van der Cruijsen J, Leijendekkers R, Verdonschot N, Solis-Escalante T, Weer-desteyn V. The influence of prosthetic suspension on gait and cortical modulations is persons with a transfemoral amputation: socket-suspended versus bone-anchored prosthesis. J Neuroeng Rehabil 2024; 21: 35.

https://doi.org/10.1186/s12984-024-01331-y DOI: https://doi.org/10.1186/s12984-024-01331-y

Kaller CP, Rahm B, Spreer J, Weiller C, Unterrainer JM. Dissociable contributions of left and right dorsolateral prefrontal cortex in planning. Cereb Cortex 2011; 21: 307-317.

https://doi.org/10.1093/cercor/bhq096 DOI: https://doi.org/10.1093/cercor/bhq096

Rahman TT, Polskaia N, St-Amant G, Salzman T, Vallejo DT, Lajoie Y, et al. An fNIRS investi-gation of discrete and continuous cognitive demands during dual-task walking in young adults. Front Hum Neurosci 2021; 15: 711054.

https://doi.org/10.3389/fnhum.2021.711054 DOI: https://doi.org/10.3389/fnhum.2021.711054

Alves PN, Forkel SJ, Corbetta M, Thiebaut de Schotten M. The subcortical and neuroche-mical organization of the ventral and dorsal attention networks. Commun Biol 2022; 5: 1343.

https://doi.org/10.1038/s42003-022-04281-0 DOI: https://doi.org/10.1038/s42003-022-04281-0

Lundberg M, Hagberg K, Bullington J. My prosthesis as a part of me: a qualitative analysis of living with an osseointegrated prosthetic limb. Prosthet Orthot Int 2011; 35: 207-214.

https://doi.org/10.1177/0309364611409795 DOI: https://doi.org/10.1177/0309364611409795

Krauskopf T, Lauck T, Meyer B, Klein L, Mueller M, Kubosch J, et al. Neuromuscular adap-tations after osseointegration of a bone-anchored prosthesis in a unilateral transfemo-ral amputee: a case study. Ann Med 2023; 55: 2255206.

https://doi.org/10.1080/07853890.2023.2255206 DOI: https://doi.org/10.1080/07853890.2023.2255206

Hebert JS, Rehani M, Stiegelmar R. Osseointegration for lower-limb amputation: a syste-matic review of clinical outcomes. JBJS Rev 2017; 5: e10.

https://doi.org/10.2106/JBJS.RVW.17.00037 DOI: https://doi.org/10.2106/JBJS.RVW.17.00037

Hagberg K, Hansson E, Brånemark R. Outcome of percutaneous osseointegrated prost-heses for patients with unilateral transfemoral amputation at two-year follow-up. Arch Phys Med Rehabil 2014; 95: 2120-2127.

https://doi.org/10.1016/j.apmr.2014.07.009 DOI: https://doi.org/10.1016/j.apmr.2014.07.009

Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical re-search. J Psychiatr Res 2011; 45: 626-629.

https://doi.org/10.1016/j.jpsychires.2010.10.008 DOI: https://doi.org/10.1016/j.jpsychires.2010.10.008

Bell JC, Wolf EJ, Schnall BL, Tis JE, Tis LL, Potter BK. Transfemoral amputations: the effect of residual limb length and orientation on gait analysis outcome measures. J Bone Joint Surg Am 2013; 95: 408-414.

https://doi.org/10.2106/JBJS.K.01446 DOI: https://doi.org/10.2106/JBJS.K.01446

Lu CF, Liu YC, Yang YR, Wu YT, Wang RY. Maintaining gait performance by cortical activat-ion during dual-task interference: a functional near-infrared spectroscopy study. PLoS One 2015; 10: e0129390.

https://doi.org/10.1371/journal.pone.0129390 DOI: https://doi.org/10.1371/journal.pone.0129390

Lin MI, Lin KH. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics. Front Behav Neurosci 2016; 10: 92.

https://doi.org/10.3389/fnbeh.2016.00092 DOI: https://doi.org/10.3389/fnbeh.2016.00092

Cooper RJ, Selb J, Gagnon L, Phillip D, Schytz HW, Iversen HK, et al. A systematic compari-son of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci 2012; 6: 147.

https://doi.org/10.3389/fnins.2012.00147 DOI: https://doi.org/10.3389/fnins.2012.00147

Tak S, Ye JC. Statistical analysis of fNIRS data: a comprehensive review. Neuroimage 2014; 85 Pt 1: 72-91.

https://doi.org/10.1016/j.neuroimage.2013.06.016 DOI: https://doi.org/10.1016/j.neuroimage.2013.06.016

Additional Files

Published

2024-08-22

How to Cite

Möller, S., Hagberg, K., & Ramstrand, N. (2024). Cognitive load in individuals with a transfemoral amputation during single- and dual-task walking: a pilot study of brain activity in people using a socket prosthesis or a bone-anchored prosthesis. Journal of Rehabilitation Medicine, 56, jrm40111. https://doi.org/10.2340/jrm.v56.40111

Issue

Section

Original Report

Categories

Funding data