Hyperspectral Imaging Reveals Spectral Differences and Can Distinguish Malignant Melanoma from Pigmented Basal Cell Carcinomas: A Pilot Study
DOI:
https://doi.org/10.2340/00015555-3755Keywords:
deep learning, neural network, basal cell carcinoma, malignant melanomaAbstract
Pigmented basal cell carcinomas can be difficult to distinguish from melanocytic tumours. Hyperspectral imaging is a non-invasive imaging technique that measures the reflectance spectra of skin in vivo. The aim of this prospective pilot study was to use a convolutional neural network classifier in hyperspectral images for differential diagnosis between pigmented basal cell carcinomas and melanoma. A total of 26 pigmented lesions (10 pigmented basal cell carcinomas, 12 melanomas in situ, 4 invasive melanomas) were imaged with hyperspectral imaging and excised for histopathological diagnosis. For 2-class classifier (melanocytic tumours vs pigmented basal cell carcinomas) using the majority of the pixels to predict the class of the whole lesion, the results showed a sensitivity of 100% (95% confidence interval 81–100%), specificity of 90% (95% confidence interval 60–98%) and positive predictive value of 94% (95% confidence interval 73–99%). These results indicate that a convolutional neural network classifier can differentiate melanocytic tumours from pigmented basal cell carcinomas in hyperspectral images. Further studies are warranted in order to confirm these preliminary results, using larger samples and multiple tumour types, including all types of melanocytic lesions.
Downloads
References
Cameron MC, Lee E, Hibler BP, Barker CA, Mori S, Cordova M, et al. Basal cell carcinoma: Epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol 2019; 80: 303-317.
DOI: https://doi.org/10.1016/j.jaad.2018.03.060
Menzies SW. Dermoscopy of pigmented basal cell carcinoma. Clin Dermatol 2002; 20: 268-269.
DOI: https://doi.org/10.1016/S0738-081X(02)00229-8
Wozniak-Rito A, Zalaudek I, Rudnicka L. Dermoscopy of basal cell carcinoma. Clin Exp Dermatol 2018; 43: 241-247.
DOI: https://doi.org/10.1111/ced.13387
Cameron MC, Lee E, Hibler BP, Giordano CN, Barker CA, Mori S, et al. Basal cell carcinoma: contemporary approaches to diagnosis, treatment, and prevention. J Am Acad Dermatol 2019; 80: 321-339.
DOI: https://doi.org/10.1016/j.jaad.2018.02.083
Altamura D, Menzies SW, Argenziano G, Zalaudek I, Soyer HP, Sera F, et al. Dermatoscopy of basal cell carcinoma: morphologic variability of global and local features and accuracy of diagnosis. J Am Acad Dermatol 2010; 62: 67-75.
DOI: https://doi.org/10.1016/j.jaad.2009.05.035
Bosbous MW, Dzwierzynski WW, Neuburg M. Lentigo maligna: diagnosis and treatment. Clin Plast Surg 2010; 37: 35-46.
DOI: https://doi.org/10.1016/j.cps.2009.08.006
Neittaanmaki-Perttu N, Gronroos M, Tani T, Polonen I, Ranki A, Saksela O, et al. Detecting field cancerization using a hyperspectral imaging system. Lasers Surg Med 2013; 45: 410-417.
DOI: https://doi.org/10.1002/lsm.22160
Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt 2014; 19: 10901.
DOI: https://doi.org/10.1117/1.JBO.19.1.010901
Salmivuori M, Neittaanmaki N, Polonen I, Jeskanen L, Snellman E, Gronroos M. Hyperspectral imaging system in the delineation of Ill-defined basal cell carcinomas: a pilot study. J Eur Acad Dermatol Venereol 2019; 33: 71-78.
DOI: https://doi.org/10.1111/jdv.15102
Neittaanmaki-Perttu N, Gronroos M, Jeskanen L, Polonen I, Ranki A, Saksela O, et al. Delineating margins of lentigo maligna using a hyperspectral imaging system. Acta Derm Venereol 2015; 95: 549-552.
DOI: https://doi.org/10.2340/00015555-2010
Neittaanmaki N, Salmivuori M, Polonen I, Jeskanen L, Ranki A, Saksela O, et al. Hyperspectral imaging in detecting dermal invasion in lentigo maligna melanoma. Br J Dermatol 2017; 177: 1742-1744.
DOI: https://doi.org/10.1111/bjd.15267
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115-118.
DOI: https://doi.org/10.1038/nature21056
Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 2018; 29: 1836-1842.
DOI: https://doi.org/10.1093/annonc/mdy166
Tschandl P, Rosendahl C, Akay BN, Argenziano G, Blum A, Braun RP, et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol 2019; 155: 58-65.
DOI: https://doi.org/10.1001/jamadermatol.2018.4378
Halicek M, Little JV, Wang X, Patel M, Griffith CC, Chen AY, et al. Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng 2018; 10576: 1057605.
DOI: https://doi.org/10.1117/12.2293167
Halicek M, Little JV, Wang X, Patel M, Griffith CC, El-Deiry MW, et al. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng 2018; 10469: 104690X.
DOI: https://doi.org/10.1117/12.2289023
Barun, VV, Ivanov, AP, Volotovskaya, AV, Ulashchik, VS. Absorption spectra and light penetration depth of normal and pathologically altered human skin. J Appl Spectrosc 2007; 74: 430-439.
DOI: https://doi.org/10.1007/s10812-007-0071-2
Saari H, Polonen I, Salo H, Honkavaara E, Hakala T, Holmlund C, et al. Miniaturized hyperspectral imager calibration and UAV flight campaigns. Sensors, Systems, and Next-Generation Satellites Xvii 2013; 8889: 88891O.
DOI: https://doi.org/10.1117/12.2028972
Polonen I, Rahkonen S, Annala L, Neittaanmaki N. Convolutional neural networks in skin cancer detection using spatial and spectral domain. Photon Dermatol Plast Surg 2019; 10851: 108510B.
DOI: https://doi.org/10.1117/12.2509871
Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT Press; 2016: p. 2.
Audebert N, Le Saux B, Lefèvre S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci Remote Sens Mag 2009; 7: 159-173.
DOI: https://doi.org/10.1109/MGRS.2019.2912563
Lunga D, Prasad S, Crawford MM, Ersoy O. Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal Process Mag 2013; 31: 55-66.
DOI: https://doi.org/10.1109/MSP.2013.2279894
Ghamisi P, Plaza J, Chen Y, Li J, Plaza, AJ. Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci Remote Sens Mag 2017; 5: 8-32.
DOI: https://doi.org/10.1109/MGRS.2016.2616418
Elbaum M, Kopf AW, Rabinovitz HS, Langley RG, Kamino H, Mihm MC, Jr, et al. Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study. J Am Acad Dermatol 2001; 44: 207-218.
DOI: https://doi.org/10.1067/mjd.2001.110395
Wells R, Gutkowicz-Krusin D, Veledar E, Toledano A, Chen SC. Comparison of diagnostic and management sensitivity to melanoma between dermatologists and MelaFind: a pilot study. Arch Dermatol 2012; 148: 1083-1084.
DOI: https://doi.org/10.1001/archdermatol.2012.946
Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M, et al. The performance of MelaFind: a prospective multicenter study. Arch Dermatol 2011; 147: 188-194.
DOI: https://doi.org/10.1001/archdermatol.2010.302
MacLellan AN, Price EL, Publicover-Brouwer P, Matheson K, Ly TY, Pasternak S, et al. The use of non-invasive imaging techniques in the diagnosis of melanoma: a prospective diagnostic accuracy study. J Am Acad Dermatol 2020 Apr 11 (Online ahead of print).
DOI: https://doi.org/10.1016/j.jaad.2020.04.019
March J, Hand M, Grossman D. Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches. J Am Acad Dermatol 2015; 72: 929-941, quiz 941-942.
DOI: https://doi.org/10.1016/j.jaad.2015.02.1138
Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol 2002; 146: 448-457.
DOI: https://doi.org/10.1046/j.1365-2133.2002.04569.x
Terstappen K, Larkö O, Wennberg AM. Pigmented basal cell carcinoma - comparing the diagnostic methods of SIAscopy and dermoscopy. Acta Derm Venereol 2007; 87: 238-242.
Tomatis S, Carrara M, Bono A, Bartoli C, Lualdi M, Tragni G, et al. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Phys Med Biol 2005; 50: 1675-1687.
DOI: https://doi.org/10.1088/0031-9155/50/8/004
Carrara M, Bono A, Bartoli C, Colombo A, Lualdi M, Moglia D, et al. Multispectral imaging and artificial neural network: mimicking the management decision of the clinician facing pigmented skin lesions. Phys Med Biol 2007; 52: 2599-2613.
DOI: https://doi.org/10.1088/0031-9155/52/9/018
Rajpara SM, Botello AP, Townend J, Ormerod AD. Systematic review of dermoscopy and digital dermoscopy/artificial intelligence for the diagnosis of melanoma. Br J Dermatol 2009; 161: 591-604.
DOI: https://doi.org/10.1111/j.1365-2133.2009.09093.x
Carapeba MOL, Alves Pineze M, Nai GA. Is dermoscopy a good tool for the diagnosis of lentigo maligna and lentigo maligna melanoma? A meta-analysis. Clin Cosmet Investig Dermatol 2019; 12: 403-414.
DOI: https://doi.org/10.2147/CCID.S208717
Lallas A, Tzellos T, Kyrgidis A, Apalla Z, Zalaudek I, Karatolias A, et al. Accuracy of dermoscopic criteria for discriminating superficial from other subtypes of basal cell carcinoma. J Am Acad Dermatol 2014; 70: 303-311.
DOI: https://doi.org/10.1016/j.jaad.2013.10.003
Brankov N, Prodanovic EM, Hurley MY. Pigmented basal cell carcinoma: increased melanin or increased melanocytes? J Cutan Pathol 2016; 43: 1139-1142.
Published
How to Cite
License
Copyright (c) 2021 Janne Räsänen, Mari Salmivuori, Ilkka Pölönen, Mari Grönroos, Noora Neittaanmäki
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.