Metformin: A Potential Treatment for Acne, Hidradenitis Suppurativa and Rosacea

Authors

DOI:

https://doi.org/10.2340/actadv.v103.18392

Keywords:

Acne vulgaris, Hidradenitis suppurativa, Metformin, Rosacea

Abstract

Metformin is a widely used drug for treatment of diabetes mellitus, due to its safety and efficacy. In addition to its role as an antidiabetic drug, numerous beneficial effects of metformin have enabled its use in various diseases. Considering the anti-androgenic, anti-angiogenic, anti-fibrotic and antioxidant properties of metformin, it may have the potential to improve chronic inflammatory skin diseases. However, further evidence is needed to confirm the efficacy of metformin in dermatological conditions, This review focuses on exploring the therapeutic targets of metformin in acne vulgaris, hidradenitis suppurativa and rosacea, by studying their pathogeneses.

Downloads

Download data is not yet available.

References

Nasri H, Rafieian-Kopaei M. Metformin: current knowledge. J Res Med Sci 2014; 19: 658-664.

https://doi.org/10.12659/MSMBR.889344 DOI: https://doi.org/10.12659/MSMBR.889344

Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol (Lausanne) 2020; 11: 191.

https://doi.org/10.3389/fendo.2020.00191 DOI: https://doi.org/10.3389/fendo.2020.00191

Badr D, Kurban M, Abbas O. Metformin in dermatology: an overview. J Eur Acad Dermatol Venereol 2013; 27: 1329-1335.

https://doi.org/10.1111/jdv.12116 DOI: https://doi.org/10.1111/jdv.12116

Bubna AK. Metformin - for the dermatologist. Ind J Pharmacol 2016; 48: 4-10.

https://doi.org/10.4103/0253-7613.174388 DOI: https://doi.org/10.4103/0253-7613.174388

Podhorecka M, Ibanez B, Dmoszyńska A. Metformin - its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online) 2017; 71: 170-175.

https://doi.org/10.5604/01.3001.0010.3801 DOI: https://doi.org/10.5604/01.3001.0010.3801

Bienenfeld A, Azarchi S, Lo Sicco K, Marchbein S, Shapiro J, Nagler AR. Androgens in women: Androgen-mediated skin disease and patient evaluation. J Am Acad Dermatol 2019; 80: 1497-1506.

https://doi.org/10.1016/j.jaad.2018.08.062 DOI: https://doi.org/10.1016/j.jaad.2018.08.062

Lai JJ, Chang P, Lai KP, Chen L, Chang C. The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res 2012; 304: 499-510.

https://doi.org/10.1007/s00403-012-1265-x DOI: https://doi.org/10.1007/s00403-012-1265-x

Ceruti JM, Leirós GJ, Balañá ME. Androgens and androgen receptor action in skin and hair follicles. Mol Cell Endocrinol 2018; 465: 122-133.

https://doi.org/10.1016/j.mce.2017.09.009 DOI: https://doi.org/10.1016/j.mce.2017.09.009

Zouboulis CC. Acne and sebaceous gland function. Clin Dermatol 2004; 22: 360-366.

https://doi.org/10.1016/j.clindermatol.2004.03.004 DOI: https://doi.org/10.1016/j.clindermatol.2004.03.004

Mirdamadi Y, Bommhardt U, Goihl A, Guttek K, Zouboulis CC, Quist S, et al. Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in T cells in vitro. Dermatoendocrinol 2017; 9: e1356518.

https://doi.org/10.1080/19381980.2017.1356518 DOI: https://doi.org/10.1080/19381980.2017.1356518

Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R, Balato A, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients' skin. Exp Dermatol 2016; 25: 153-155.

https://doi.org/10.1111/exd.12885 DOI: https://doi.org/10.1111/exd.12885

Thiboutot D. Regulation of human sebaceous glands. J Invest Dermatol 2004; 123: 1-12.

https://doi.org/10.1111/j.1523-1747.2004.t01-2-.x DOI: https://doi.org/10.1111/j.1523-1747.2004.t01-2-.x

Mirdamadi Y, Thielitz A, Wiede A, Goihl A, Papakonstantinou E, Hartig R, et al. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro. Mol Cell Endocrinol 2015; 415: 32-44.

https://doi.org/10.1016/j.mce.2015.08.001 DOI: https://doi.org/10.1016/j.mce.2015.08.001

Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol 2009; 18: 833-841.

https://doi.org/10.1111/j.1600-0625.2009.00924.x DOI: https://doi.org/10.1111/j.1600-0625.2009.00924.x

Goldburg SR, Strober BE, Payette MJ. Hidradenitis suppurativa: epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol 2020; 82: 1045-1058.

https://doi.org/10.1016/j.jaad.2019.08.090 DOI: https://doi.org/10.1016/j.jaad.2019.08.090

Harrison BJ, Kumar S, Read GF, Edwards CA, Scanlon MF, Hughes LE. Hidradenitis suppurativa: evidence for an endocrine abnormality. Br J Surg 1985; 72: 1002-1004.

https://doi.org/10.1002/bjs.1800721223 DOI: https://doi.org/10.1002/bjs.1800721223

Mortimer PS, Dawber RP, Gales MA, Moore RA. Mediation of hidradenitis suppurativa by androgens. Br Med J (Clin Res Ed) 1986; 292: 245-248.

https://doi.org/10.1136/bmj.292.6515.245 DOI: https://doi.org/10.1136/bmj.292.6515.245

Margesson LJ, Danby FW. Hidradenitis suppurativa. Best Pract Res Clin Obstet Gynaecol 2014; 28: 1013-1027.

https://doi.org/10.1016/j.bpobgyn.2014.07.012 DOI: https://doi.org/10.1016/j.bpobgyn.2014.07.012

Barth JH, Kealey T. Androgen metabolism by isolated human axillary apocrine glands in hidradenitis suppurativa. Br J Dermatol 1991; 125: 304-308.

https://doi.org/10.1111/j.1365-2133.1991.tb14162.x DOI: https://doi.org/10.1111/j.1365-2133.1991.tb14162.x

Kraft JN, Searles GE. Hidradenitis suppurativa in 64 female patients: retrospective study comparing oral antibiotics and antiandrogen therapy. J Cutan Med Surg 2007; 11: 125-131.

https://doi.org/10.2310/7750.2007.00019 DOI: https://doi.org/10.2310/7750.2007.00019

Goldsmith PC, Dowd PM. Successful therapy of the follicular occlusion triad in a young woman with high dose oral antiandrogens and minocycline. J R Soc Med 1993; 86: 729-730.

https://doi.org/10.1177/014107689308601218 DOI: https://doi.org/10.1177/014107689308601218

Mortimer PS, Dawber RP, Gales MA, Moore RA. A double-blind controlled cross-over trial of cyproterone acetate in females with hidradenitis suppurativa. Br J Dermatol 1986; 115: 263-268.

https://doi.org/10.1111/j.1365-2133.1986.tb05740.x DOI: https://doi.org/10.1111/j.1365-2133.1986.tb05740.x

Golbari NM, Porter ML, Kimball AB. Antiandrogen therapy with spironolactone for the treatment of hidradenitis suppurativa. J Am Acad Dermatol 2019; 80: 114-119.

https://doi.org/10.1016/j.jaad.2018.06.063 DOI: https://doi.org/10.1016/j.jaad.2018.06.063

Babbush KM, Andriano TM, Cohen SR. Antiandrogen therapy in hidradenitis suppurativa: finasteride for females. Clin Exp Dermatol 2022; 47: 86-92.

https://doi.org/10.1111/ced.14847 DOI: https://doi.org/10.1111/ced.14847

Monfrecola G, Balato A, Caiazzo G, De Vita V, Di Caprio R, Donnarumma M, et al. Mammalian target of rapamycin, insulin resistance and hidradenitis suppurativa: a possible metabolic loop. J Eur Acad Dermatol Venereol 2016; 30: 1631-1633.

https://doi.org/10.1111/jdv.13233 DOI: https://doi.org/10.1111/jdv.13233

Herman R, Kravos NA, Jensterle M, Janež A, Dolžan V. Metformin and insulin resistance: a review of the underlying mechanisms behind changes in GLUT4-mediated glucose transport. Int J Mol Sci 2022; 23: 1264.

https://doi.org/10.3390/ijms23031264 DOI: https://doi.org/10.3390/ijms23031264

Chen K, Li Y, Guo Z, Zeng Y, Zhang W, Wang H. Metformin: current clinical applications in nondiabetic patients with cancer. Aging (Albany NY) 2020; 12: 3993-4009.

https://doi.org/10.18632/aging.102787 DOI: https://doi.org/10.18632/aging.102787

Pawelczyk L, Spaczynski RZ, Banaszewska B, Duleba AJ. Metformin therapy increases insulin-like growth factor binding protein-1 in hyperinsulinemic women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2004; 113: 209-213.

https://doi.org/10.1016/j.ejogrb.2003.09.031 DOI: https://doi.org/10.1016/j.ejogrb.2003.09.031

Hu M, Zhang Y, Li X, Cui P, Sferruzzi-Perri AN, Brännström M, et al. TLR4-associated IRF-7 and NFκB signaling act as a molecular link between androgen and metformin activities and cytokine synthesis in the PCOS endometrium. J Clin Endocrinol Metab 2021; 106: 1022-1040.

https://doi.org/10.1210/clinem/dgaa951 DOI: https://doi.org/10.1210/clinem/dgaa951

Ohara M, Yoshida-Komiya H, Ono-Okutsu M, Yamaguchi-Ito A, Takahashi T, Fujimori K. Metformin reduces androgen receptor and upregulates homeobox A10 expression in uterine endometrium in women with polycystic ovary syndrome. Reprod Biol Endocrinol 2021; 19: 77.

https://doi.org/10.1186/s12958-021-00765-6 DOI: https://doi.org/10.1186/s12958-021-00765-6

Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 971; 285: 1182-1186

https://doi.org/10.1056/NEJM197111182852108 DOI: https://doi.org/10.1056/NEJM197111182852108

Fried LE, Arbiser JL. Application of angiogenesis to clinical dermatology. Adv Dermatol 2008; 24: 89-103.

https://doi.org/10.1016/j.yadr.2008.09.010 DOI: https://doi.org/10.1016/j.yadr.2008.09.010

Barnhill RL, Wolf JE, Jr. Angiogenesis and the skin. J Am Acad Dermatol 1987; 16: 1226-1242.

https://doi.org/10.1016/S0190-9622(87)70161-3 DOI: https://doi.org/10.1016/S0190-9622(87)70161-3

Lee HJ, Hong YJ, Kim M. Angiogenesis in chronic inflammatory skin disorders. Int J Mol Sci 2021; 22: 12035.

https://doi.org/10.3390/ijms222112035 DOI: https://doi.org/10.3390/ijms222112035

Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 2007; 39: 212-220.

https://doi.org/10.1016/j.bcmd.2007.04.001 DOI: https://doi.org/10.1016/j.bcmd.2007.04.001

Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002; 282: C947-C970.

https://doi.org/10.1152/ajpcell.00389.2001 DOI: https://doi.org/10.1152/ajpcell.00389.2001

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298-307.

https://doi.org/10.1038/nature10144 DOI: https://doi.org/10.1038/nature10144

Goumans MJ, Ten Dijke P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol 2018; 10: a022210.

https://doi.org/10.1101/cshperspect.a022210 DOI: https://doi.org/10.1101/cshperspect.a022210

Varricchi G, Granata F, Loffredo S, Genovese A, Marone G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J Am Acad Dermatol 2015; 73: 144-153.

https://doi.org/10.1016/j.jaad.2015.03.041 DOI: https://doi.org/10.1016/j.jaad.2015.03.041

Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 2007; 13: 975-980.

https://doi.org/10.1038/nm1616 DOI: https://doi.org/10.1038/nm1616

Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol 2011; 131: 688-697.

https://doi.org/10.1038/jid.2010.351 DOI: https://doi.org/10.1038/jid.2010.351

Segovia J, Sabbah A, Mgbemena V, Tsai SY, Chang TH, Berton MT, et al. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS One 2012; 7: e29695.

https://doi.org/10.1371/journal.pone.0029695 DOI: https://doi.org/10.1371/journal.pone.0029695

Oikonomopoulou K, Hansen KK, Saifeddine M, Vergnolle N, Tea I, Blaber M, et al. Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biol Chem 2006; 387: 817-824.

https://doi.org/10.1515/BC.2006.104 DOI: https://doi.org/10.1515/BC.2006.104

Buddenkotte J, Steinhoff M. Recent advances in understanding and managing rosacea. F1000Res 2018; 7: F1000 Faculty Rev-1885.

https://doi.org/10.12688/f1000research.16537.1 DOI: https://doi.org/10.12688/f1000research.16537.1

Gomaa AH, Yaar M, Eyada MM, Bhawan J. Lymphangiogenesis and angiogenesis in non-phymatous rosacea. J Cutan Pathol 2007; 34: 748-753.

https://doi.org/10.1111/j.1600-0560.2006.00695.x DOI: https://doi.org/10.1111/j.1600-0560.2006.00695.x

Shah A, Alhusayen R, Amini-Nik S. The critical role of macrophages in the pathogenesis of hidradenitis suppurativa. Inflamm Res 2017; 66: 931-945.

https://doi.org/10.1007/s00011-017-1074-y DOI: https://doi.org/10.1007/s00011-017-1074-y

Vilanova I, Hernández JL, Mata C, Durán C, García-Unzueta MT, Portilla V, et al. Insulin resistance in hidradenitis suppurativa: a case-control study. J Eur Acad Dermatol Venereol 2018; 32: 820-824.

https://doi.org/10.1111/jdv.14894 DOI: https://doi.org/10.1111/jdv.14894

Napolitano M, Megna M, Monfrecola G. Insulin resistance and skin diseases. ScientificWorldJournal 2015; 2015: 479354.

https://doi.org/10.1155/2015/479354 DOI: https://doi.org/10.1155/2015/479354

Frew JW. Hidradenitis suppurativa is an autoinflammatory keratinization disease: A review of the clinical, histologic, and molecular evidence. JAAD Int 2020; 1: 62-72.

https://doi.org/10.1016/j.jdin.2020.05.005 DOI: https://doi.org/10.1016/j.jdin.2020.05.005

Salven P, Hattori K, Heissig B, Rafii S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. Faseb J 2002; 16: 1471-1473.

https://doi.org/10.1096/fj.02-0134fje DOI: https://doi.org/10.1096/fj.02-0134fje

Firlej E, Kowalska W, Szymaszek K, Roliński J, Bartosińska J. The role of skin immune system in acne. J Clin Med 2022; 11: 1579.

https://doi.org/10.3390/jcm11061579 DOI: https://doi.org/10.3390/jcm11061579

Jugeau S, Tenaud I, Knol AC, Jarrousse V, Quereux G, Khammari A, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol 2005; 153: 1105-1113.

https://doi.org/10.1111/j.1365-2133.2005.06933.x DOI: https://doi.org/10.1111/j.1365-2133.2005.06933.x

Li ZJ, Choi DK, Sohn KC, Seo MS, Lee HE, Lee Y, et al. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes. J Invest Dermatol 2014; 134: 2747-2756.

https://doi.org/10.1038/jid.2014.221 DOI: https://doi.org/10.1038/jid.2014.221

Wang JC, Li GY, Wang B, Han SX, Sun X, Jiang YN, et al. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J Exp Clin Cancer Res 2019; 38: 235.

https://doi.org/10.1186/s13046-019-1211-2 DOI: https://doi.org/10.1186/s13046-019-1211-2

Wang J, Li G, Wang Y, Tang S, Sun X, Feng X, et al. Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. Oncotarget 2015; 6: 44579-44592.

https://doi.org/10.18632/oncotarget.6373 DOI: https://doi.org/10.18632/oncotarget.6373

Orecchioni S, Reggiani F, Talarico G, Mancuso P, Calleri A, Gregato G, et al. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int J Cancer 2015; 136: E534-E544.

https://doi.org/10.1002/ijc.29193 DOI: https://doi.org/10.1002/ijc.29193

Tan BK, Adya R, Chen J, Farhatullah S, Heutling D, Mitchell D, et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res 2009; 83: 566-574.

https://doi.org/10.1093/cvr/cvp131 DOI: https://doi.org/10.1093/cvr/cvp131

Tadakawa M, Takeda T, Li B, Tsuiji K, Yaegashi N. The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-1α signaling pathway in ELT-3 cells. Mol Cell Endocrinol 2015; 399: 1-8.

https://doi.org/10.1016/j.mce.2014.08.012 DOI: https://doi.org/10.1016/j.mce.2014.08.012

Liao H, Zhou Q, Gu Y, Duan T, Feng Y. Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep 2012; 27: 1873-1878.

Rattan R, Graham RP, Maguire JL, Giri S, Shridhar V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 2011; 13: 483-491.

https://doi.org/10.1593/neo.11148 DOI: https://doi.org/10.1593/neo.11148

Karagianni F, Pavlidis A, Malakou LS, Piperi C, Papadavid E. Predominant role of mTOR signaling in skin diseases with therapeutic potential. Int J Mol Sci 2022; 23: 1693.

https://doi.org/10.3390/ijms23031693 DOI: https://doi.org/10.3390/ijms23031693

Peng Q, Sha K, Liu Y, Chen M, Xu S, Xie H, et al. mTORC1-mediated angiogenesis is required for the development of rosacea. Front Cell Dev Biol 2021; 9: 751785.

https://doi.org/10.3389/fcell.2021.751785 DOI: https://doi.org/10.3389/fcell.2021.751785

Deng Z, Chen M, Liu Y, Xu S, Ouyang Y, Shi W, et al. A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea. EMBO Mol Med 2021; 13: e13560.

https://doi.org/10.15252/emmm.202013560 DOI: https://doi.org/10.15252/emmm.202013560

Nagai S, Kurebayashi Y, Koyasu S. Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation. Ann N Y Acad Sci 2013; 1280: 30-34.

https://doi.org/10.1111/nyas.12059 DOI: https://doi.org/10.1111/nyas.12059

Chen X, Wang S, Xu W, Zhao M, Zhang Y, Xiao H. Metformin directly binds to MMP-9 to improve plaque stability. J Cardiovasc Dev Dis 2023; 10: 54.

https://doi.org/10.3390/jcdd10020054 DOI: https://doi.org/10.3390/jcdd10020054

Li Y, Yang L, Wang Y, Deng Z, Xu S, Xie H, et al. Exploring metformin as a candidate drug for rosacea through network pharmacology and experimental validation. Pharmacol Res 2021; 174: 105971.

https://doi.org/10.1016/j.phrs.2021.105971 DOI: https://doi.org/10.1016/j.phrs.2021.105971

Tsuji G, Hashimoto-Hachiya A, Yen VH, Takemura M, Yumine A, Furue K, et al. Metformin inhibits IL-1β secretion via impairment of NLRP3 inflammasome in keratinocytes: implications for preventing the development of psoriasis. Cell Death Discov 2020; 6: 11.

https://doi.org/10.1038/s41420-020-0245-8 DOI: https://doi.org/10.1038/s41420-020-0245-8

Wu M, Xu H, Liu J, Tan X, Wan S, Guo M, et al. Metformin and fibrosis: a review of existing evidence and mechanisms. J Diabetes Res 2021; 2021: 6673525.

https://doi.org/10.1155/2021/6673525 DOI: https://doi.org/10.1155/2021/6673525

Do NN, Eming SA. Skin fibrosis: models and mechanisms. Curr Res Transl Med 2016; 64: 185-193.

https://doi.org/10.1016/j.retram.2016.06.003 DOI: https://doi.org/10.1016/j.retram.2016.06.003

Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol 2015; 47: 54-65.

https://doi.org/10.1016/j.matbio.2015.05.006 DOI: https://doi.org/10.1016/j.matbio.2015.05.006

Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292: 76-83.

https://doi.org/10.1016/j.cbi.2018.07.008 DOI: https://doi.org/10.1016/j.cbi.2018.07.008

Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res 2010; 87: 504-513.

https://doi.org/10.1093/cvr/cvq066 DOI: https://doi.org/10.1093/cvr/cvq066

Yi H, Huang C, Shi Y, Cao Q, Zhao Y, Zhang L, et al. Metformin attenuates folic-acid induced renal fibrosis in mice. J Cell Physiol 2018; 233: 7045-7054.

https://doi.org/10.1002/jcp.26505 DOI: https://doi.org/10.1002/jcp.26505

Xiao H, Zhang J, Xu Z, Feng Y, Zhang M, Liu J, et al. Metformin is a novel suppressor for transforming growth factor (TGF)-β1. Sci Rep 2016; 6: 28597.

https://doi.org/10.1038/srep28597 DOI: https://doi.org/10.1038/srep28597

Lim JY, Oh MA, Kim WH, Sohn HY, Park SI. AMP-activated protein kinase inhibits TGF-β-induced fibrogenic responses of hepatic stellate cells by targeting transcriptional coactivator p300. J Cell Physiol 2012; 227: 1081-1089.

https://doi.org/10.1002/jcp.22824 DOI: https://doi.org/10.1002/jcp.22824

Cheng D, Xu Q, Wang Y, Li G, Sun W, Ma D, et al. Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. J Transl Med 2021; 19: 349.

https://doi.org/10.1186/s12967-021-03036-5 DOI: https://doi.org/10.1186/s12967-021-03036-5

Biller ML, Tuffs C, Bleul M, Tran DT, Dupovac M, Keppler U, et al. Effect of metformin on HIF-1α signaling and postoperative adhesion formation. J Am Coll Surg 2022; 234: 1167-1180.

https://doi.org/10.1097/XCS.0000000000000205 DOI: https://doi.org/10.1097/XCS.0000000000000205

Kim JM, Yoo H, Kim JY, Oh SH, Kang JW, Yoo BR, et al. Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3. Cell Physiol Biochem 2018; 48: 959-970.

https://doi.org/10.1159/000491964 DOI: https://doi.org/10.1159/000491964

Jeon HB, Roh H, Ahn HM, Lee JH, Yun CO, Roh TS, et al. Metformin inhibits transforming growth factor β-induced fibrogenic response of human dermal fibroblasts and suppresses fibrosis in keloid spheroids. Ann Plast Surg 2021; 86: 406-411.

https://doi.org/10.1097/SAP.0000000000002574 DOI: https://doi.org/10.1097/SAP.0000000000002574

Lei R, Zhang S, Wang Y, Dai S, Sun J, Zhu C. Metformin inhibits epithelial-to-mesenchymal transition of keloid fibroblasts via the HIF-1α/PKM2 signaling pathway. Int J Med Sci 2019; 16: 960-966.

https://doi.org/10.7150/ijms.32157 DOI: https://doi.org/10.7150/ijms.32157

Harmanci S, Dutta A, Cesur S, Sahin A, Gunduz O, Kalaskar DM, et al. Production of 3D printed bi-layer and tri-layer sandwich scaffolds with polycaprolactone and poly (vinyl alcohol)-metformin towards diabetic wound healing. Polymers (Basel) 2022; 14: 5306.

https://doi.org/10.3390/polym14235306 DOI: https://doi.org/10.3390/polym14235306

Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater 2020; 113: 144-163.

https://doi.org/10.1016/j.actbio.2020.06.031 DOI: https://doi.org/10.1016/j.actbio.2020.06.031

Baek J, Lee MG. Oxidative stress and antioxidant strategies in dermatology. Redox Rep 2016; 21: 164-169.

https://doi.org/10.1179/1351000215Y.0000000015 DOI: https://doi.org/10.1179/1351000215Y.0000000015

Nakai K, Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases?. Int J Mol Sci 2021; 22: 10799.

https://doi.org/10.3390/ijms221910799 DOI: https://doi.org/10.3390/ijms221910799

Addor FAS. Antioxidants in dermatology. An Bras Dermatol 2017; 92: 356-362.

https://doi.org/10.1590/abd1806-4841.20175697 DOI: https://doi.org/10.1590/abd1806-4841.20175697

Basak PY, Gultekin F, Kilinc I. The role of the antioxidative defense system in papulopustular acne. J Dermatol 2001; 28: 123-127.

https://doi.org/10.1111/j.1346-8138.2001.tb00105.x DOI: https://doi.org/10.1111/j.1346-8138.2001.tb00105.x

Kurutas EB, Arican O, Sasmaz S. Superoxide dismutase and myeloperoxidase activities in polymorphonuclear leukocytes in acne vulgaris. Acta Dermatovenerol Alp Pannonica Adriat 2005; 14: 39-42.

https://doi.org/10.1155/MI.2005.380 DOI: https://doi.org/10.1155/MI.2005.380

Akamatsu H, Horio T. The possible role of reactive oxygen species generated by neutrophils in mediating acne inflammation. Dermatology 1998; 196: 82-85.

https://doi.org/10.1159/000017876 DOI: https://doi.org/10.1159/000017876

Ozuguz P, Dogruk Kacar S, Ekiz O, Takci Z, Balta I, Kalkan G. Evaluation of serum vitamins A and E and zinc levels according to the severity of acne vulgaris. Cutan Ocul Toxicol 2014; 33: 99-102.

https://doi.org/10.3109/15569527.2013.808656 DOI: https://doi.org/10.3109/15569527.2013.808656

El-Akawi Z, Abdel-Latif N, Abdul-Razzak K. Does the plasma level of vitamins A and E affect acne condition? Clin Exp Dermatol 2006; 31: 430-434.

https://doi.org/10.1111/j.1365-2230.2006.02106.x DOI: https://doi.org/10.1111/j.1365-2230.2006.02106.x

Tunçez Akyürek F, Saylam Kurtipek G, Kurku H, Akyurek F, Unlu A, Abusoglu S, et al. Assessment of ADMA, IMA, and vitamin A and E levels in patients with acne vulgaris. J Cosmet Dermatol 2020; 19: 3408-3413.

https://doi.org/10.1111/jocd.13590 DOI: https://doi.org/10.1111/jocd.13590

Balik ZB, Balik AR, Yucel C, Hayran Y, Çaliskan E, Erel O. Investigation of thiol-disulfide homeostasis and ischemia-modified albumin levels in patients with hidradenitis supurativa. J Cosmet Dermatol 2022; 21: 4748-4753.

https://doi.org/10.1111/jocd.14753 DOI: https://doi.org/10.1111/jocd.14753

Tisma VS, Basta-Juzbasic A, Jaganjac M, Brcic L, Dobric I, Lipozencic J, et al. Oxidative stress and ferritin expression in the skin of patients with rosacea. J Am Acad Dermatol 2009; 60: 270-276.

https://doi.org/10.1016/j.jaad.2008.10.014 DOI: https://doi.org/10.1016/j.jaad.2008.10.014

Baz K, Cimen MY, Kokturk A, Aslan G, Ikizoglu G, Demirseren DD, et al. Plasma reactive oxygen species activity and antioxidant potential levels in rosacea patients: correlation with seropositivity to Helicobacter pylori. Int J Dermatol 2004; 43: 494-497.

https://doi.org/10.1111/j.1365-4632.2004.02137.x DOI: https://doi.org/10.1111/j.1365-4632.2004.02137.x

Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 2007; 157: 1124-1131.

https://doi.org/10.1111/j.1365-2133.2007.08196.x DOI: https://doi.org/10.1111/j.1365-2133.2007.08196.x

Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 2017; 16: 79.

https://doi.org/10.1186/s12943-017-0648-1 DOI: https://doi.org/10.1186/s12943-017-0648-1

Kelly B, Tannahill GM, Murphy MP, O'Neill LA. Metformin inhibits the production of reactive oxygen species from NADH: ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J Biol Chem 2015; 290: 20348-20359.

https://doi.org/10.1074/jbc.M115.662114 DOI: https://doi.org/10.1074/jbc.M115.662114

Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 2020; 500: 110628.

https://doi.org/10.1016/j.mce.2019.110628 DOI: https://doi.org/10.1016/j.mce.2019.110628

Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol 2020; 19: 62.

https://doi.org/10.1186/s12933-020-01041-4 DOI: https://doi.org/10.1186/s12933-020-01041-4

Araújo AA, Pereira A, Medeiros C, Brito GAC, Leitão RFC, Araújo LS, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One 2017; 12: e0183506.

https://doi.org/10.1371/journal.pone.0183506 DOI: https://doi.org/10.1371/journal.pone.0183506

Sharma P, Kumar S. Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD). Cell Oncol (Dordr) 2018; 41: 637-650.

https://doi.org/10.1007/s13402-018-0398-0 DOI: https://doi.org/10.1007/s13402-018-0398-0

Tripathi SS, Singh S, Garg G, Kumar R, Verma AK, Singh AK, et al. Metformin ameliorates acetaminophen-induced sub-acute toxicity via antioxidant property. Drug Chem Toxicol 2022; 45: 52-60.

https://doi.org/10.1080/01480545.2019.1658769 DOI: https://doi.org/10.1080/01480545.2019.1658769

Yen H, Chang YT, Yee FJ, Huang YC. Metformin therapy for acne in patients with polycystic ovary syndrome: a systematic review and meta-analysis. Am J Clin Dermatol 2021; 22: 11-23.

https://doi.org/10.1007/s40257-020-00565-5 DOI: https://doi.org/10.1007/s40257-020-00565-5

Fraison E, Kostova E, Moran LJ, Bilal S, Ee CC, Venetis C, et al. Metformin versus the combined oral contraceptive pill for hirsutism, acne, and menstrual pattern in polycystic ovary syndrome. Cochrane Database Syst Rev 2020; 8: Cd005552.

https://doi.org/10.1002/14651858.CD005552.pub3 DOI: https://doi.org/10.1002/14651858.CD005552.pub3

Robinson S, Kwan Z, Tang MM. Metformin as an adjunct therapy for the treatment of moderate to severe acne vulgaris: a randomized open-labeled study. Dermatol Ther 2019; 32: e12953.

https://doi.org/10.1111/dth.12953 DOI: https://doi.org/10.1111/dth.12953

Fabbrocini G, Izzo R, Faggiano A, Del Prete M, Donnarumma M, Marasca C, et al. Low glycaemic diet and metformin therapy: a new approach in male subjects with acne resistant to common treatments. Clin Exp Dermatol 2016; 41: 38-42.

https://doi.org/10.1111/ced.12673 DOI: https://doi.org/10.1111/ced.12673

Kamboj P, Kaushik A, Handa S, Dutta P, Saikia UN, Pal A, et al. Effects of metformin on clinical, hormonal and relevant gene expression parameters in patients of acne - an observational study. Clin Exp Dermatol 2023; 48: 617-622.

https://doi.org/10.1093/ced/llad020 DOI: https://doi.org/10.1093/ced/llad020

Verdolini R, Clayton N, Smith A, Alwash N, Mannello B. Metformin for the treatment of hidradenitis suppurativa: a little help along the way. J Eur Acad Dermatol Venereol 2013; 27: 1101-1108.

https://doi.org/10.1111/j.1468-3083.2012.04668.x DOI: https://doi.org/10.1111/j.1468-3083.2012.04668.x

Jennings L, Hambly R, Hughes R, Moriarty B, Kirby B. Metformin use in hidradenitis suppurativa. J Dermatolog Treat 2020; 31: 261-263.

https://doi.org/10.1080/09546634.2019.1592100 DOI: https://doi.org/10.1080/09546634.2019.1592100

Moussa C, Wadowski L, Price H, Mirea L, O'Haver J. Metformin as adjunctive therapy for pediatric patients with hidradenitis suppurativa. J Drugs Dermatol 2020; 19: 1231-1234.

https://doi.org/10.36849/JDD.2020.5447 DOI: https://doi.org/10.36849/JDD.2020.5447

Published

2023-12-11

How to Cite

Cho, M., Woo, Y. R., Cho, S. H., Lee, J. D., & Kim, H. S. (2023). Metformin: A Potential Treatment for Acne, Hidradenitis Suppurativa and Rosacea. Acta Dermato-Venereologica, 103, adv18392. https://doi.org/10.2340/actadv.v103.18392

Issue

Section

Review

Categories