Sociodemographic and Environmental Determinants of Regional Prevalence of Psoriasis in Germany: A Spatiotemporal Study of Ambulatory Claims Data

Authors

  • Valerie Andrees Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
  • Sandra Wolf Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
  • Marie Sander Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
  • Matthias Augustin Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
  • Jobst Augustin Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany

DOI:

https://doi.org/10.2340/actadv.v104.12430

Keywords:

reginal variation, spatiotemporal regression analyses, prevalence difference, environmental factors, sociodemographic factors

Abstract

There are regional differences in the prevalence of psoriasis between countries, as well as within countries. However, regional determinants of differences in prevalence are not yet understood. The aim of this study was to identify sociodemographic and environmental determinants of regional prevalence rates for psoriasis. Analyses were based on German outpatient billing data from statutory health insurance, together with data from databases on sociodemographic and environment factors at the county level (N = 402) for 2015–2017. Descriptive statistics were calculated for all variables. To identify determinants for prevalence at the county level, spatiotemporal regression analysis was performed, with prevalence as the dependent variable, and the number of physicians, mean age, mean precipitation, sunshine hours, mean temperature, level of urbanity, and the German Index of Socioeconomic Deprivation (GISD) as independent variables. Mean prevalence of psoriasis increased from 168.63 per 10,000 in 2015 to 173.54 per 10,000 in 2017 for Germany as a whole, with high regional variation. Five determinants were detected (p < 0.05). The prevalence increased by 4.18 per 10,000 persons with SHI with each GISD unit, and by 3.76 per 10,000 with each year increase in age. Each additional hour of sunshine resulted in a decrease of 0.04 and each °C increase in mean temperature resulted in an increase of 4.22. Each additional dermatologist per 10,000 inhabitants resulted in a decrease of 0.07. In conclusion, sociodemographic and environmental factors result in significant differences in prevalence of psoriasis, even within-country.

Downloads

Download data is not yet available.

References

Jungen D, Augustin M, Langenbruch A, Zander N, Reich K, Strömer K, et al. Cost-of-illness of psoriasis - results of a German cross-sectional study. J Eur Acad Dermatol Venereol 2018; 32: 174-180.

https://doi.org/10.1111/jdv.14543 DOI: https://doi.org/10.1111/jdv.14543

Jankowiak B, Kowalewska B, Krajewska-Kułak E, Khvorik DF. Stigmatization and quality of life in patients with psoriasis. Dermatol Ther (Heidelb) 2020; 10: 285-296.

https://doi.org/10.1007/s13555-020-00363-1 DOI: https://doi.org/10.1007/s13555-020-00363-1

Da Silva N, Stülpnagel C von, Langenbruch A, Danckworth A, Augustin M, Sommer R. Disease burden and patient needs and benefits in anogenital psoriasis: developmental specificities for person-centred healthcare of emerging adults and adults. J Eur Acad Dermatol Venereol 2020; 34: 1010-1018.

https://doi.org/10.1111/jdv.16076 DOI: https://doi.org/10.1111/jdv.16076

Boehncke W-H, Schön MP. Psoriasis. Lancet 2015; 386: 983-994.

https://doi.org/10.1016/S0140-6736(14)61909-7 DOI: https://doi.org/10.1016/S0140-6736(14)61909-7

Springate DA, Parisi R, Kontopantelis E, Reeves D, Griffiths CEM, Ashcroft DM. Incidence, prevalence and mortality of patients with psoriasis: a UK population-based cohort study. Br J Dermatol 2017; 176: 650-658.

https://doi.org/10.1111/bjd.15021 DOI: https://doi.org/10.1111/bjd.15021

Buja A, Miatton A, Cozzolino C, Brazzale AR, Lo Bue R, Mercuri SR, et al. The prevalent comorbidome at the onset of psoriasis diagnosis. Dermatol Ther (Heidelb) 2023; 13: 2093-2105.

https://doi.org/10.1007/s13555-023-00986-0 DOI: https://doi.org/10.1007/s13555-023-00986-0

Jacobson CC, Kumar S, Kimball AB. Latitude and psoriasis prevalence. J Am Acad Dermatol 2011; 65: 870-873.

https://doi.org/10.1016/j.jaad.2009.05.047 DOI: https://doi.org/10.1016/j.jaad.2009.05.047

Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol 2017; 31: 205-212.

https://doi.org/10.1111/jdv.13854 DOI: https://doi.org/10.1111/jdv.13854

Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ 2020; 369: m1590.

https://doi.org/10.1136/bmj.m1590 DOI: https://doi.org/10.1136/bmj.m1590

Gutierrez E, Sanmartino C, Carrera O, Fraga A, Arce C. Psoriasis: latitude does make a difference. J Am Acad Dermatol 2017; 77: e57.

https://doi.org/10.1016/j.jaad.2017.03.049 DOI: https://doi.org/10.1016/j.jaad.2017.03.049

Damiani G, Bragazzi NL, Karimkhani Aksut C, Wu D, Alicandro G, McGonagle D, et al. The global, regional, and national burden of psoriasis: results and insights from the Global Burden of Disease 2019 Study. Front Med (Lausanne) 2021; 8: 743180.

https://doi.org/10.3389/fmed.2021.743180 DOI: https://doi.org/10.3389/fmed.2021.743180

Andrees V, Wolf S, Augustin M, Mohr N, Augustin J. Regional variations and prevalence of psoriasis in Germany from 2010 to 2017: a cross-sectional, spatio-epidemiological study on ambulatory claims data. BMJ Open 2021; 11: e047806.

https://doi.org/10.1136/bmjopen-2020-047806 DOI: https://doi.org/10.1136/bmjopen-2020-047806

Caputo V, Strafella C, Termine A, Dattola A, Mazzilli S, Lanna C, et al. Overview of the molecular determinants contributing to the expression of Psoriasis and Psoriatic Arthritis phenotypes. J Cell Mol Med 2020; 24: 13554-13563.

https://doi.org/10.1111/jcmm.15742 DOI: https://doi.org/10.1111/jcmm.15742

Roszkiewicz M, Dopytalska K, Szymańska E, Jakimiuk A, Walecka I. Environmental risk factors and epigenetic alternations in psoriasis. Ann Agric Environ Med 2020; 27: 335-342.

https://doi.org/10.26444/aaem/112107 DOI: https://doi.org/10.26444/aaem/112107

Barrea L, Nappi F, Di Somma C, Savanelli MC, Falco A, Balato A, et al. Environmental risk factors in psoriasis: the point of view of the nutritionist. Int J Environ Res Public Health 2016; 13: 743.

https://doi.org/10.3390/ijerph13070743 DOI: https://doi.org/10.3390/ijerph13070743

Li X, Sundquist J, Hamano T, Sundquist K. Neighborhood deprivation and risks of autoimmune disorders: a national cohort study in Sweden. Int J Environ Res Public Health 2019; 16: 3798.

https://doi.org/10.3390/ijerph16203798 DOI: https://doi.org/10.3390/ijerph16203798

Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun 2010; 34: J314-321.

https://doi.org/10.1016/j.jaut.2009.12.001 DOI: https://doi.org/10.1016/j.jaut.2009.12.001

Isler MF, Coates SJ, Boos MD. Climate change, the cutaneous microbiome and skin disease: implications for a warming world. Int J Dermatol 2022; 62: 337-345.

https://doi.org/10.1111/ijd.16297 DOI: https://doi.org/10.1111/ijd.16297

Statistisches Bundesamt (Destatis). NUTS-Klassifikation - Die Einteilung der Europäischen Union in EU-Regionen [cited 2023 Dec 18]. Available from: https:// www.destatis.de/Europa/DE/Methoden-Metadaten/Klassifikationen/UebersichtKlassifikationen_NUTS.html#:~:text=NUTS%20%2D3%20entspricht%20in%20Deutschland%20den%20Kreisen%20und%20kreisfreien%20St%C3%A4dten.&text=Trotz%20des%20Bestrebens%2C%20auf%20einer,wirtschaftlichen%20und%20verwaltungstechnischen%20Bedeutung%20unterscheiden.

Swart E, Ihle P, Gothe H, Matusiewicz D, editors. Routinedaten im Gesundheitswesen: Handbuch Sekundärdatenanalyse: Grundlagen, Methoden und Perspektiven. 2nd edn. Bern: Huber; 2014.

Kroll LE, Schumann M, Hoebel J, Lampert T. Regionale Unterschiede in der Gesundheit - Entwicklung eines sozioökonomischen Deprivationsindex für Deutschland. J Health Monitor 2017; 2: 103-120.

https://doi.org/10.1055/s-0037-1605605 DOI: https://doi.org/10.1055/s-0037-1605605

Bundesinstitut für Bau-, Stadt und Raumforschung. INKAR - Indikatoren und Karten zur Raum- und Stadtentwicklung [cited 2022 Sep 1]. Available from: www.inkar.de

Bundesamt für Bauwesen und Raumordnung. Zusammengefasster Kreistyp 2009 - BBSR [cited 2022 Sep 12]. Available from: https://www.bbsr.bund.de/BBSR/DE/forschung/raumbeobachtung/Raumabgrenzungen/SiedlungsstrukturelleGebietstypen/Kreistypen_zus/Download_Karte2009_zus_PDF.pdf?__blob=publicationFile&v=2.

Deutscher Wetterdienst (DWD). CDC (Climate Data Center) [cited 2023 Sep 12]. Available from: www.dwd.de/EN/climate_environment/cdc/cdc_en.html.

Zentralinstitut für die kassenärztliche Versorgung in der Bundesrepublik Deutschland (Zi). Versogungsatlas.de [cited 2022 Sep 15]. Available from: www.versorgungsatlas.de.

Ibáñez B, Librero J, Bernal-Delgado E, Peiró S, López-Valcarcel BG, Martínez N, et al. Is there much variation in variation? Revisiting statistics of small area variation in health services research. BMC Health Serv Res 2009; 9: 60.

https://doi.org/10.1186/1472-6963-9-60 DOI: https://doi.org/10.1186/1472-6963-9-60

Leroux BG, Lei X, Breslow N. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Miller W, Halloran ME, Berry D, editors. Statistical models in epidemiology, the environment, and clinical trials. New York, NY: Springer New York; 2000: p. 179-191.

https://doi.org/10.1007/978-1-4612-1284-3_4 DOI: https://doi.org/10.1007/978-1-4612-1284-3_4

Lee D. A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package. Spat Spatiotemporal Epidemiol 2020; 34: 100353.

https://doi.org/10.1016/j.sste.2020.100353 DOI: https://doi.org/10.1016/j.sste.2020.100353

Rushworth A, Lee D, Mitchell R. A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London. Spat Spatiotemporal Epidemiol 2014; 10: 29-38.

https://doi.org/10.1016/j.sste.2014.05.001 DOI: https://doi.org/10.1016/j.sste.2014.05.001

R Core Team. A language and environment for statistical computing; 2008 [cited 2022 Sep 21]. Available from: https://www.R-project.org/

Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Baysian Statistics 1992: 169-193.

https://doi.org/10.1093/oso/9780198522669.003.0010 DOI: https://doi.org/10.1093/oso/9780198522669.003.0010

Zhang P, Su Y, Lu Q. Epigenetics and psoriasis. J Eur Acad Dermatol Venereol 2012; 26: 399-403.

https://doi.org/10.1111/j.1468-3083.2011.04261.x DOI: https://doi.org/10.1111/j.1468-3083.2011.04261.x

Basora J, Villalobos F, Pallejà-Millán M, Babio N, Goday A, Zomeño MD, et al. Deprivation Index and lifestyle: baseline cross-sectional analysis of the PREDIMED-Plus Catalonia Study. Nutrients 2021; 13: 3408.

https://doi.org/10.3390/nu13103408 DOI: https://doi.org/10.3390/nu13103408

Singer S, Berneburg M. Phototherapy. J Dtsch Dermatol Ges 2018; 16: 1120-1129.

https://doi.org/10.1111/ddg.13646 DOI: https://doi.org/10.1111/ddg.13646

Enamandram M, Kimball AB. Psoriasis epidemiology: the interplay of genes and the environment. J Invest Dermatol 2013; 133: 287-289.

https://doi.org/10.1038/jid.2012.434 DOI: https://doi.org/10.1038/jid.2012.434

Pacifico A, Conic RRZ, Cristaudo A, Garbarino S, Ardigò M, Morrone A, et al. Diet-related phototoxic reactions in psoriatic patients undergoing phototherapy: results from a multicenter prospective study. Nutrients 2021; 13: 2934.

https://doi.org/10.3390/nu13092934 DOI: https://doi.org/10.3390/nu13092934

Damiani G, Pacifico A, Scoditti E, Di Gregorio S, Del Fabbro M, Cozzolino C, et al. Circadian oscillations of Minimal Erythema Dose (MED) are also influenced by diet in patients with psoriasis: a chronomedical study. Dermatol Ther (Heidelb) 2023; 13: 2229-2246.

https://doi.org/10.1007/s13555-023-00987-z DOI: https://doi.org/10.1007/s13555-023-00987-z

Barrea L, Savanelli MC, Di Somma C, Napolitano M, Megna M, Colao A, et al. Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist. Rev Endocr Metab Disord 2017; 18: 195-205.

https://doi.org/10.1007/s11154-017-9411-6 DOI: https://doi.org/10.1007/s11154-017-9411-6

AlQassimi S, AlBrashdi S, Galadari H, Hashim MJ. Global burden of psoriasis - comparison of regional and global epidemiology, 1990 to 2017. Int J Dermatol 2020; 59: 566-571.

https://doi.org/10.1111/ijd.14864 DOI: https://doi.org/10.1111/ijd.14864

Leibowitz E, Seidman DS, Laor A, Shapiro Y, Epstein Y. Are psoriatic patients at risk of heat intolerance? Br J Dermatol 1991; 124: 439-442.

https://doi.org/10.1111/j.1365-2133.1991.tb00622.x DOI: https://doi.org/10.1111/j.1365-2133.1991.tb00622.x

Augustin J, Kis A, Sorbe C, Schäfer I, Augustin M. Epidemiology of skin cancer in the German population: impact of socioeconomic and geographic factors. J Eur Acad Dermatol Venereol 2018; 32: 1906-1913.

https://doi.org/10.1111/jdv.14990 DOI: https://doi.org/10.1111/jdv.14990

Published

2024-02-07

How to Cite

Andrees, V., Wolf, S., Sander, M., Augustin, M., & Augustin, J. (2024). Sociodemographic and Environmental Determinants of Regional Prevalence of Psoriasis in Germany: A Spatiotemporal Study of Ambulatory Claims Data. Acta Dermato-Venereologica, 104, adv12430. https://doi.org/10.2340/actadv.v104.12430

Issue

Section

Articles

Categories