Molecular Organization of the Skin Barrier
DOI:
https://doi.org/10.2340/actadv.v103.13356Keywords:
Cryo-electron microscopy, molecular organization, permeability barrierAbstract
Cryo-electron microscopy of vitreous sections allows for investigation directly in situ of the molecular architecture of skin. Recently, this technique has contributed to the elucidation of the molecular organization of the skin’s permeability barrier and its stepwise formation process. The aim of this review is to provide an overview of the procedure for cryo-electron microscopy of vitreous sections, its analysis using atomic detail molecular dynamics modelling and electron microscopy simulation, and its application in the investigation of the barrier structure and formation process of the skin.
Downloads
References
Duriau F. Recherches expérimentales sur l'absorption et l'exhalation par le té́gument externe. Arch Gen Med T 1856; 7: 161-173.
Homolle A. Expériences physiologiques sur l'absorption par la tégument externe chez l'homme dans le bain. Union Med 1853; 7: 462.
Winsor TB, Burch GE. Differential roles of layers of human epigastric skin on diffusion rate of water. Arch Intern Med 1944; 74: 428-436.
https://doi.org/10.1001/archinte.1944.00210240018004 DOI: https://doi.org/10.1001/archinte.1944.00210240018004
Berenson GS, Burch GE. Studies of diffusion of water through dead human skin; the effect of different environmental states and of chemical alterations of the epidermis. Am J Trop Med Hyg 1951; 31: 842-853.
https://doi.org/10.4269/ajtmh.1951.s1-31.842 DOI: https://doi.org/10.4269/ajtmh.1951.s1-31.842
Blank IH. Factors which influence the water content of the stratum corneum. J Invest Dermatol 1952; 18: 433-440.
https://doi.org/10.1038/jid.1952.52 DOI: https://doi.org/10.1038/jid.1952.52
Onken HD, Moyer CA. The water barrier in human epidermis. Physical and chemical nature. Arch Dermatol 1963; 87: 584-590.
https://doi.org/10.1001/archderm.1963.01590170042007 DOI: https://doi.org/10.1001/archderm.1963.01590170042007
Brody I. Intercellular space in normal human stratum corneum. Nature 1966; 209: 472-476.
https://doi.org/10.1038/209472a0 DOI: https://doi.org/10.1038/209472a0
Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev 1971; 51: 702-747.
https://doi.org/10.1152/physrev.1971.51.4.702 DOI: https://doi.org/10.1152/physrev.1971.51.4.702
Elias PM, Friend DS. The permeability barrier in mammalian epidermis. J Cell Biol 1975; 65: 180-191.
https://doi.org/10.1083/jcb.65.1.180 DOI: https://doi.org/10.1083/jcb.65.1.180
Elias PM. Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 1983; 80: 44s-49s.
https://doi.org/10.1111/1523-1747.ep12537108 DOI: https://doi.org/10.1111/1523-1747.ep12537108
Wertz PW, Downing DT. Ceramides of pig epidermis: structure determination. J Lipid Res 1983; 24: 759-765.
https://doi.org/10.1016/S0022-2275(20)37950-5 DOI: https://doi.org/10.1016/S0022-2275(20)37950-5
Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J Invest Dermatol 1991; 97: 1005-1012.
https://doi.org/10.1111/1523-1747.ep12492217 DOI: https://doi.org/10.1111/1523-1747.ep12492217
Potts RO, Guy RH. Predicting skin permeability. Pharm Res 1992; 9: 663-669.
https://doi.org/10.1023/A:1015810312465 DOI: https://doi.org/10.1023/A:1015810312465
Forslind B. A domain mosaic model of the skin barrier. Acta Derm Venereol 1994; 74: 1-6.
https://doi.org/10.2340/00015555741214 DOI: https://doi.org/10.2340/00015555741214
Schaefer H, Redelmeier TE. Skin barrier: principles of percutaneous absorption. Basel, Switzerland: Karger Publishers; 1996.
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta 2014; 1841: 280-294.
https://doi.org/10.1016/j.bbalip.2013.11.007 DOI: https://doi.org/10.1016/j.bbalip.2013.11.007
Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta 2014; 1841: 422-434.
https://doi.org/10.1016/j.bbalip.2013.08.011 DOI: https://doi.org/10.1016/j.bbalip.2013.08.011
Schmitt T, Neubert RHH. State of the art in stratum corneum research: the biophysical properties of ceramides. Chem Phys Lipids 2018; 216: 91-103.
https://doi.org/10.1016/j.chemphyslip.2018.09.017 DOI: https://doi.org/10.1016/j.chemphyslip.2018.09.017
Wertz P. Epidermal lamellar granules. Skin Pharmacol Physiol 2018; 31: 262-268.
https://doi.org/10.1159/000491757 DOI: https://doi.org/10.1159/000491757
Ishida-Yamamoto A, Igawa S, Kishibe M. Molecular basis of the skin barrier structures revealed by electron microscopy. Exp Dermatol 2018; 27: 841-846.
https://doi.org/10.1111/exd.13674 DOI: https://doi.org/10.1111/exd.13674
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, et al. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88: 101184.
https://doi.org/10.1016/j.plipres.2022.101184 DOI: https://doi.org/10.1016/j.plipres.2022.101184
Ishida-Yamamoto A, Yamanishi H, Igawa S, Kishibe M, Kusumi S, Watanabe T, Koga D. Secretion bias of lamellar granules revealed by three-dimensional electron microscopy. J Invest Dermatol 2023; 143: 1310-1312.
https://doi.org/10.1016/j.jid.2023.03.1674 DOI: https://doi.org/10.1016/j.jid.2023.03.1674
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: an extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92: 101252.
https://doi.org/10.1016/j.plipres.2023.101252 DOI: https://doi.org/10.1016/j.plipres.2023.101252
Norlén L, Al-Amoudi A, Dubochet, J. A cryo-transmission electron microscopy study of skin barrier formation. J Invest Dermatol 2003; 120: 555-560.
https://doi.org/10.1046/j.1523-1747.2003.12102.x
Norlén L, Al-Amoudi A. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J Invest Dermatol 2004; 123: 715-732.
https://doi.org/10.1111/j.0022-202X.2004.23213.x DOI: https://doi.org/10.1111/j.0022-202X.2004.23213.x
Al-Amoudi A, Dubochet J, Norlén L. Nanostructure of the epidermal extracellular space as observed by cryo-electron microscopy of vitreous sections of human skin. J Invest Dermatol 2005; 124: 764-777.
https://doi.org/10.1111/j.0022-202X.2005.23630.x
Iwai I, Han H, den Hollander L, Svensson S, Öfverstedt L-G, Anwar J, et al. The human skin barrier is organized as stacked bilayers of fully-extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J Invest Dermatol 2012; 132: 2215-2225.
https://doi.org/10.1038/jid.2012.43 DOI: https://doi.org/10.1038/jid.2012.43
den Hollander L, Han H-M, de Winter M, Svensson L, Masich S, Daneholt B, Norlén L. Skin lamellar bodies are not discrete vesicles but part of a tubuloreticular network. Acta Derm Venereol 2016; 96: 303-308.
https://doi.org/10.2340/00015555-2249 DOI: https://doi.org/10.2340/00015555-2249
Lundborg M, Narangifard A, Wennberg C, Lindahl E, Norlén L. Human skin barrier molecular structure and function analyzed by cryo-electron microscopy and molecular dynamics simulation. J Struct Biol 2018a; 203: 149-161.
https://doi.org/10.1016/j.jsb.2018.04.005 DOI: https://doi.org/10.1016/j.jsb.2018.04.005
Narangifard A, den Hollander L, Iwai I, Han H, Wennberg CL, Lundborg M, et al. Human skin barrier formation takes place via a cubic to lamellar lipid phase transition. Exp Cell Res 2018; 366: 139-151.
https://doi.org/10.1016/j.yexcr.2018.03.010 DOI: https://doi.org/10.1016/j.yexcr.2018.03.010
Wennberg C, Narangifard A, Lundborg M, Lindahl E, Norlén L. Structural transitions in ceramide cubic phases during formation of the human skin barrier. Biophys J 2018; 114: 1116-1127.
https://doi.org/10.1016/j.bpj.2017.12.039 DOI: https://doi.org/10.1016/j.bpj.2017.12.039
Narangifard A, Wennberg CL, den Hollander L, Iwai I, Han H, Lundborg M, et al. Molecular reorganization during formation of the human skin barrier studied in situ. J. Invest. Dermatol 2021; 141: 1243-1253.e6.
https://doi.org/10.1016/j.jid.2020.07.040 DOI: https://doi.org/10.1016/j.jid.2020.07.040
Dubochet J, Adrian M, Chang J-J, Homo J-C, Lepault J, McDowall AW, et al. Cryo electron microscopy of vitrified specimens. Q Rev Biophys 1988; 21: 129-228.
https://doi.org/10.1017/S0033583500004297 DOI: https://doi.org/10.1017/S0033583500004297
Al-Amoudi A, Chang J-J, Leforestier A, McDowall A, Michel Salamin L, Norlén L, et al. Cryo-electron microscopy of vitreous sections. EMBO J 2004; 23: 3583-3588.
https://doi.org/10.1038/sj.emboj.7600366 DOI: https://doi.org/10.1038/sj.emboj.7600366
Al-Amoudi A, Dubochet J, Norlén L. Nanostructure of the epidermal extracellular space as observed by cryo-electron microscopy of vitreous sections of human skin. J Invest Dermatol 2005; 124: 764-777.
https://doi.org/10.1111/j.0022-202X.2005.23630.x DOI: https://doi.org/10.1111/j.0022-202X.2005.23630.x
Norlén L, Al-Amoudi A, Dubochet, J. A cryo-transmission electron microscopy study of skin barrier formation. J Invest Dermatol 2003; 120: 555-560.
https://doi.org/10.1046/j.1523-1747.2003.12102.x DOI: https://doi.org/10.1046/j.1523-1747.2003.12102.x
Fanelli D, Öktem O. Electron tomography: a short review with an emphasis on the absorption potential model for the forward problem. Inverse Probl 2008; 24: 013001 (51pp).
https://doi.org/10.1088/0266-5611/24/1/013001 DOI: https://doi.org/10.1088/0266-5611/24/1/013001
Pronk SS, Páll R, Schulz P, Larsson P, Bjelkmar R, Apostolov et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 2013; 29: 845-854.
https://doi.org/10.1093/bioinformatics/btt055 DOI: https://doi.org/10.1093/bioinformatics/btt055
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015; 1-2: 19-25.
https://doi.org/10.1016/j.softx.2015.06.001 DOI: https://doi.org/10.1016/j.softx.2015.06.001
Rullgård H, Öfverstedt L-G, Masich S, Daneholt B, Öktem O. Simulation of transmission electron microscope images of biological specimens. J. Microscopy 2011; 243: 234-256.
https://doi.org/10.1111/j.1365-2818.2011.03497.x DOI: https://doi.org/10.1111/j.1365-2818.2011.03497.x
Elias PM, Cullander C, Mauro T, Rassner U, Kömuves, Brown BE, et al. The secretory granular cell: the outermost granular cell as a specialized secretory cell. J Invest Dermatol Symp Proc 1998; 3: 87-100.
https://doi.org/10.1038/jidsymp.1998.20 DOI: https://doi.org/10.1038/jidsymp.1998.20
Norlén L, Lundborg M, Wennberg C, Narangifard A, Daneholt B. The skin's barrier: a cryo-EM based overview of its architecture and stepwise formation. J Invest Dermatol 2022; 142: 285-292.
https://doi.org/10.1016/j.jid.2021.06.037 DOI: https://doi.org/10.1016/j.jid.2021.06.037
Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presence of intact intercellular lamellae in the upper layers of the stratum corneum. J Invest. Dermatol 1987; 88: 714-718.
https://doi.org/10.1111/1523-1747.ep12470386 DOI: https://doi.org/10.1111/1523-1747.ep12470386
Hou SYE, Mitra AK, White SH et al. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and X-ray diffraction. J Invest Dermatol 1991; 96: 215-223.
https://doi.org/10.1111/1523-1747.ep12461361 DOI: https://doi.org/10.1111/1523-1747.ep12461361
Lundborg M, Wennberg C, Narangifard A, Lindahl E, Norlén L. Predicting drug permeability through skin using molecular dynamics simulation. J Controlled Release 2018b; 283: 269-227.
https://doi.org/10.1016/j.jconrel.2018.05.026 DOI: https://doi.org/10.1016/j.jconrel.2018.05.026
Lundborg M, Wennberg C, Lidmar J, Hess B, Lindahl E, Norlen L. Skin permeability prediction with MD simulation sampling spatial and alchemical reaction coordinates, Biophysical J 2022; 121: 3837-3849.
https://doi.org/10.1016/j.bpj.2022.09.009 DOI: https://doi.org/10.1016/j.bpj.2022.09.009
Wennberg C, Lundborg M, Lindahl E, Norlen L. Understanding drug skin permeation enhancers using molecular dynamics simulations. J Chem Inf Model 2023; 63: 4900-4911.
https://doi.org/10.1021/acs.jcim.3c00625 DOI: https://doi.org/10.1021/acs.jcim.3c00625
Yamanishi H, Soma T, Kishimoto J, Hibino T and Ishida-Yamamoto A. marked changes in lamellar granule and trans-golgi network structure occur during epidermal keratinocyte differentiation. J Invest Derm 2019; 139: 352-359.
https://doi.org/10.1016/j.jid.2018.07.043 DOI: https://doi.org/10.1016/j.jid.2018.07.043
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lars Norlén
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.