Differential Immunoexpression of Inhibitory Immune Checkpoint Molecules and Clinicopathological Correlates in Keratoacanthoma, Primary Cutaneous Squamous Cell Carcinoma and Metastases

Authors

  • Anke S. Lonsdorf Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
  • Dominic Edelmann German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
  • Thomas Albrecht Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
  • Alexander Brobeil Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
  • Jannik Labrenz German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
  • Moritz Johanning German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
  • Richard F. Schlenk German Cancer Research Center, Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany
  • Benjamin Goeppert Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Germany
  • Alexander H. Enk Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
  • Ferdinand Toberer Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany

DOI:

https://doi.org/10.2340/actadv.v104.13381

Keywords:

checkpoint inhibition, squamous cell carcinoma, keratoacanthoma, immune evasion, PD-L1, TIGIT, CD155

Abstract

Beyond established anti-programmed cell death protein 1/programmed cell death ligand 1 immunotherapy, T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) and its ligand CD155 are promising novel inhibitory immune checkpoint targets in human malignancies. Yet, in cutaneous squamous cell carcinoma, evidence on the collective expression patterns of these inhibitory immune checkpoints is scarce. Complete tumour sections of 36 cutaneous squamous cell carcinoma, 5 cutaneous metastases and 9 keratoacanthomas, a highly-differentiated, squamoproliferative tumour, with disparately benign biologic behaviour, were evaluated by immunohistochemistry for expression of programmed cell death ligand 1 (Tumor Proportion Score, Immune Cell Score), TIGIT, CD155 and CD8+ immune infiltrates. Unlike keratoacanthomas, cutaneous squamous cell carcinoma displayed a strong positive correlation of programmed cell death ligand 1 Tumor Proportion Score and CD115 expression (p < 0.001) with significantly higher programmed cell death ligand 1 Tumor Proportion Score (p < 0.001) and CD155 expression (p < 0.01) in poorly differentiated G3-cutaneous squamous cell carcinoma compared with keratoacanthomas. TIGIT+ infiltrates were significantly increased in programmed cell death ligand 1 Immune Cell Score positive primary tumours (p = 0.05). Yet, a strong positive correlation of TIGIT expression with CD8+ infiltrates was only detected in cutaneous squamous cell carcinoma (p < 0.01), but not keratoacanthomas. Providing a comprehensive overview on the collective landscape of inhibitory immune checkpoint expression, this study reveals associations of novel inhibitory immune checkpoint with CD8+ immune infiltrates and tumour differentiation and highlights the TIGIT/CD155 axis as a potential new target for cutaneous squamous cell carcinoma immunotherapy.

Downloads

Download data is not yet available.

References

Karimkhani C, Boyers LN, Dellavalle RP, Weinstock MA. It's time for "keratinocyte carcinoma" to replace the term "nonmelanoma skin cancer". J Am Acad Dermatol 2015; 72: 186-187.

https://doi.org/10.1016/j.jaad.2014.09.036 DOI: https://doi.org/10.1016/j.jaad.2014.09.036

Global Burden of Disease Cancer C, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol 2019; 5: 1749-1768.

https://doi.org/10.1001/jamaoncol.2019.2996 DOI: https://doi.org/10.1001/jamaoncol.2019.2996

Apalla Z, Nashan D, Weller RB, Castellsague X. Skin Cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb) 2017; 7: 5-19.

https://doi.org/10.1007/s13555-016-0165-y DOI: https://doi.org/10.1007/s13555-016-0165-y

Schmults CD, Blitzblau R, Aasi SZ, Alam M, Andersen JS, Baumann BC, et al. NCCN Guidelines(R) Insights: squamous cell skin cancer, Version 1.2022. J Natl Compr Canc Netw 2021; 19: 1382-1394.

https://doi.org/10.6004/jnccn.2021.0059 DOI: https://doi.org/10.6004/jnccn.2021.0059

Stratigos AJ, Garbe C, Dessinioti C, Lebbe C, Bataille V, Bastholt L, et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 1. epidemiology, diagnostics and prevention. Eur J Cancer 2020; 128: 60-82.

https://doi.org/10.1016/j.ejca.2020.01.007 DOI: https://doi.org/10.1016/j.ejca.2020.01.007

Cowey CL, Robert NJ, Espirito JL, Davies K, Frytak J, Lowy I, et al. Clinical outcomes among unresectable, locally advanced, and metastatic cutaneous squamous cell carcinoma patients treated with systemic therapy. Cancer Med 2020; 9: 7381-7387.

https://doi.org/10.1002/cam4.3146 DOI: https://doi.org/10.1002/cam4.3146

Alberti A, Bossi P. Immunotherapy for cutaneous squamous cell carcinoma: results and perspectives. Front Oncol 2021; 11: 727027.

https://doi.org/10.3389/fonc.2021.727027 DOI: https://doi.org/10.3389/fonc.2021.727027

Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561.

https://doi.org/10.3389/fphar.2017.00561 DOI: https://doi.org/10.3389/fphar.2017.00561

Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, et al. PD-1 Blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 2018; 379: 341-351.

https://doi.org/10.1056/NEJMoa1805131 DOI: https://doi.org/10.1056/NEJMoa1805131

Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14: 561-584.

https://doi.org/10.1038/nrd4591 DOI: https://doi.org/10.1038/nrd4591

Stratigos AJ, Garbe C, Dessinioti C, Lebbe C, Bataille V, Bastholt L, et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: Part 2. Treatment. Eur J Cancer 2020; 128: 83-102.

https://doi.org/10.1016/j.ejca.2020.01.008 DOI: https://doi.org/10.1016/j.ejca.2020.01.008

Argenziano G, Fargnoli MC, Fantini F, Gattoni M, Gualdi G, Pastore F, et al. Identifying candidates for immunotherapy with cemiplimab to treat advanced cutaneous squamous cell carcinoma: an expert opinion. Ther Adv Med Oncol 2022; 14: 17588359211066272.

https://doi.org/10.1177/17588359211066272 DOI: https://doi.org/10.1177/17588359211066272

Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016; 17: e542-e551.

https://doi.org/10.1016/S1470-2045(16)30406-5 DOI: https://doi.org/10.1016/S1470-2045(16)30406-5

Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther 2016; 9: 5023-5039.

https://doi.org/10.2147/OTT.S105862 DOI: https://doi.org/10.2147/OTT.S105862

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252-264.

https://doi.org/10.1038/nrc3239 DOI: https://doi.org/10.1038/nrc3239

Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014; 26: 923-937.

https://doi.org/10.1016/j.ccell.2014.10.018 DOI: https://doi.org/10.1016/j.ccell.2014.10.018

Manieri NA, Chiang EY, Grogan JL. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol 2017; 38: 20-28.

https://doi.org/10.1016/j.it.2016.10.002 DOI: https://doi.org/10.1016/j.it.2016.10.002

Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 2009; 10: 48-57.

https://doi.org/10.1038/ni.1674 DOI: https://doi.org/10.1038/ni.1674

Bronte V. The expanding constellation of immune checkpoints: a DNAMic control by CD155. J Clin Invest 2018; 128: 2199-2201.

https://doi.org/10.1172/JCI121229 DOI: https://doi.org/10.1172/JCI121229

Albrecht T, Brinkmann F, Albrecht M, Lonsdorf AS, Mehrabi A, Hoffmann K, et al. programmed death ligand-1 (PD-L1) is an independent negative prognosticator in western-world gallbladder cancer. Cancers (Basel) 2021; 13: 1682.

https://doi.org/10.3390/cancers13071682 DOI: https://doi.org/10.3390/cancers13071682

Kwiek B, Schwartz RA. Keratoacanthoma (KA): an update and review. J Am Acad Dermatol 2016; 74: 1220-1233.

https://doi.org/10.1016/j.jaad.2015.11.033 DOI: https://doi.org/10.1016/j.jaad.2015.11.033

Selmer J, Skov T, Spelman L, Weedon D. Squamous cell carcinoma and keratoacanthomas are biologically distinct and can be diagnosed by light microscopy: a review. Histopathology 2016; 69: 535-541.

https://doi.org/10.1111/his.13018 DOI: https://doi.org/10.1111/his.13018

Blessin NC, Simon R, Kluth M, Fischer K, Hube-Magg C, Li W, et al. Patterns of TIGIT expression in lymphatic tissue, inflammation, and cancer. Dis Markers 2019; 2019: 5160565.

https://doi.org/10.1155/2019/5160565 DOI: https://doi.org/10.1155/2019/5160565

Nakamura S, Hayashi K, Imaoka Y, Kitamura Y, Akazawa Y, Tabata K, et al. Intratumoral heterogeneity of programmed cell death ligand-1 expression is common in lung cancer. PLoS One 2017; 12: e0186192.

https://doi.org/10.1371/journal.pone.0186192 DOI: https://doi.org/10.1371/journal.pone.0186192

Rasmussen JH, Lelkaitis G, Hakansson K, Vogelius IR, Johannesen HH, Fischer BM, et al. Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma. Br J Cancer 2019; 120: 1003-1006.

https://doi.org/10.1038/s41416-019-0449-y DOI: https://doi.org/10.1038/s41416-019-0449-y

Schildhaus HU. Der prädiktive Wert der PD-L1-Diagnostik. Pathologe 2018; 39: 498-519.

https://doi.org/10.1007/s00292-018-0507-x DOI: https://doi.org/10.1007/s00292-018-0507-x

Cohen EEW, Bell RB, Bifulco CB, Burtness B, Gillison ML, Harrington KJ, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer 2019; 7: 184.

https://doi.org/10.1186/s40425-019-0662-5 DOI: https://doi.org/10.1186/s40425-019-0662-5

Garcia-Diez I, Hernandez-Ruiz E, Andrades E, Gimeno J, Ferrandiz-Pulido C, Yebenes M, et al. PD-L1 expression is increased in metastasizing squamous cell carcinomas and their metastases. Am J Dermatopathol 2018; 40: 647-654.

https://doi.org/10.1097/DAD.0000000000001164 DOI: https://doi.org/10.1097/DAD.0000000000001164

Wu S, Slater NA, Sayed CJ, Googe PB. PD-L1 and LAG-3 expression in advanced cutaneous squamous cell carcinomas. J Cutan Pathol 2020; 47: 882-887.

https://doi.org/10.1111/cup.13709 DOI: https://doi.org/10.1111/cup.13709

Mehra R, Seiwert TY, Gupta S, Weiss J, Gluck I, Eder JP, et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer 2018; 119: 153-159.

https://doi.org/10.1038/s41416-018-0131-9 DOI: https://doi.org/10.1038/s41416-018-0131-9

Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y, et al. Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol 2020; 80: 106198.

https://doi.org/10.1016/j.intimp.2020.106198 DOI: https://doi.org/10.1016/j.intimp.2020.106198

Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, et al. Blockade of TIGIT/CD155 signaling reverses t-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res 2019; 7: 1700-1713.

https://doi.org/10.1158/2326-6066.CIR-18-0725 DOI: https://doi.org/10.1158/2326-6066.CIR-18-0725

R Development Core T. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna 2014; https://www.R-project.org.

Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 2018; 17: 129.

https://doi.org/10.1186/s12943-018-0864-3 DOI: https://doi.org/10.1186/s12943-018-0864-3

Thibaudin M, Limagne E, Hampe L, Ballot E, Truntzer C, Ghiringhelli F. Targeting PD-L1 and TIGIT could restore intratumoral CD8 T cell function in human colorectal cancer. Cancer Immunol Immunother 2022; 71: 2549-2563.

https://doi.org/10.1007/s00262-022-03182-9 DOI: https://doi.org/10.1007/s00262-022-03182-9

Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 2018; 7: e1466769.

https://doi.org/10.1080/2162402X.2018.1466769 DOI: https://doi.org/10.1080/2162402X.2018.1466769

Slater NA, Googe PB. PD-L1 expression in cutaneous squamous cell carcinoma correlates with risk of metastasis. J Cutan Pathol 2016; 43: 663-670.

https://doi.org/10.1111/cup.12728 DOI: https://doi.org/10.1111/cup.12728

Bauer C, Abdul Pari AA, Umansky V, Utikal J, Boukamp P, Augustin HG, et al. T-lymphocyte profiles differ between keratoacanthomas and invasive squamous cell carcinomas of the human skin. Cancer Immunol Immunother 2018; 67: 1147-1157.

https://doi.org/10.1007/s00262-018-2171-7 DOI: https://doi.org/10.1007/s00262-018-2171-7

de Ruiter EJ, Ooft ML, Devriese LA, Willems SM. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology 2017; 6: e1356148.

https://doi.org/10.1080/2162402X.2017.1356148 DOI: https://doi.org/10.1080/2162402X.2017.1356148

Lee BR, Chae S, Moon J, Kim MJ, Lee H, Ko HW, et al. Combination of PD-L1 and PVR determines sensitivity to PD-1 blockade. JCI Insight 2020; 5: e128633.

https://doi.org/10.1172/jci.insight.128633 DOI: https://doi.org/10.1172/jci.insight.128633

Published

2024-02-07

How to Cite

Lonsdorf, A. S., Edelmann, D., Albrecht, T., Brobeil, A., Labrenz, J., Johanning, M., … Toberer, F. (2024). Differential Immunoexpression of Inhibitory Immune Checkpoint Molecules and Clinicopathological Correlates in Keratoacanthoma, Primary Cutaneous Squamous Cell Carcinoma and Metastases. Acta Dermato-Venereologica, 104, adv13381. https://doi.org/10.2340/actadv.v104.13381

Issue

Section

Articles

Categories