Interleukin-17 Genes Polymorphisms are Significantly Associated with Cutaneous T-cell Lymphoma Susceptibility

Authors

  • Karol Kołkowski Dermatological Students Scientific Association, Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Medical University of Gdansk, 17th Str. Smoluchowskiego, PL-80-214 Gdansk, Poland
  • Jolanta Gleń Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Poland;
  • Berenika Olszewska Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Poland;
  • Monika Zabłotna Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Poland;
  • Roman J. Nowicki
  • Małgorzata Sokołowska-Wojdyło Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Poland;

DOI:

https://doi.org/10.2340/actadv.v102.2416

Keywords:

cutaneous lymphoma, mycosis fungoides, Sézary syndrome, lymphoma pathogenesis, single nucleotide polymorphisms, cytokine, interleukin-17

Abstract

Tumour microenvironment has an important effect on the progression of cutaneous T-cell lymphomas. Using PCR with sequence-specific primers, this study analysed single-nucleotide polymorphisms in the interleukin-17 genes of 150 patients with cutaneous T-cell lymphoma. GG homozygote rs8193036 A/G of interleukin-17A gene occurred less commonly in the cutaneous T-cell lymphoma group; however, patients with this single-nucleotide polymorphism experience significantly intense pruritus. Conversely, the rs2397084 AG heterozygote of interleukin-17F is more common in the lymphoma population. In addition, there were significant differences in the frequencies of interleukin-17 genotypes when comparing early (Ia to IIa) and advanced stages (IIb, III and IV) of this neoplasms. A similar result has been shown in comparison between Sézary syndrome and mycosis fungoides. The current data may serve as a possible explanation for the increased bacterial infection rates in the course of cutaneous T-cell lymphoma, especially caused by Staphylococcus aureus. In summary, specific single-nucleotide polymorphisms occur with different frequencies between cutaneous T-cell lymphoma and healthy patients. Moreover, genetic predisposition of several interleukin-17 single-nucleotide polymorphisms may be a factor causing impaired immune defence in cutaneous lymphomas.

Downloads

Download data is not yet available.

References

Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019; 133: 1703-1714.

https://doi.org/10.1182/blood-2018-11-881268 DOI: https://doi.org/10.1182/blood-2018-11-881268

Krejsgaard T, Litvinov IV, Wang Y, Xia L, Willerslev-Olsen A, Koralov SB, et al. Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood 2013; 122: 943-950.

https://doi.org/10.1182/blood-2013-01-480889 DOI: https://doi.org/10.1182/blood-2013-01-480889

Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Litvinov I V, Fredholm S, Petersen DL, et al. Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood 2016; 127: 1287-1296.

https://doi.org/10.1182/blood-2015-08-662353 DOI: https://doi.org/10.1182/blood-2015-08-662353

Miyagaki T, Sugaya M, Suga H, Kamata M, Ohmatsu H, Fujita H, et al. IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma. Clin Cancer Res 2011; 17: 7529-7538.

https://doi.org/10.1158/1078-0432.CCR-11-1192 DOI: https://doi.org/10.1158/1078-0432.CCR-11-1192

Omrane I, Marrakchi R, Baroudi O, Mezlini A, Ayari H, Medimegh I, et al. Significant association between interleukin-17A polymorphism and colorectal cancer. Tumor Biol 2014; 35: 6627-6632.

https://doi.org/10.1007/s13277-014-1890-4 DOI: https://doi.org/10.1007/s13277-014-1890-4

Klonowska J, Gleń J, Nowicki RJ, Trzeciak M. Combination of FLG mutations and SNPs of IL-17A and IL-19 influence on atopic dermatitis occurrence. Adv Dermatol Allergol 2022; 39: 200-208.

https://doi.org/10.5114/ada.2021.105412 DOI: https://doi.org/10.5114/ada.2021.105412

He Y, Du Y, Wei S, Shi J, Mei Z, Qian L, et al. IL-17A and IL-17F single nucleotide polymorphisms associated with lung cancer in Chinese population. Clin Respir J 2017; 11: 230-242.

https://doi.org/10.1111/crj.12330 DOI: https://doi.org/10.1111/crj.12330

Bialecka M, Ostasz R, Kurzawski M, Klimowicz A, Fabiañczyk H, Bojko P, et al. IL17A and IL17F gene polymorphism association with psoriasis risk and response to treatment in a Polish population. Dermatology 2017; 232: 592-596.

https://doi.org/10.1159/000448090 DOI: https://doi.org/10.1159/000448090

Shen L, Zhang H, Yan T, Zhou G, Liu R. Association between interleukin 17A polymorphisms and susceptibility to rheumatoid arthritis in a Chinese population. Gene 2015; 566: 18-22.

https://doi.org/10.1016/j.gene.2015.04.028 DOI: https://doi.org/10.1016/j.gene.2015.04.028

Marwa OS, Kalthoum T, Wajih K, Kamel H. Association of IL17A and IL17F genes with rheumatoid arthritis disease and the impact of genetic polymorphisms on response to treatment. Immunol Lett 2017; 183: 24-36.

https://doi.org/10.1016/j.imlet.2017.01.013 DOI: https://doi.org/10.1016/j.imlet.2017.01.013

Zhu M, Wang T, Chen R, Wang C, Liu S, Ji Y. Association between interleukin-17a gene polymorphisms and asthma risk: a meta-analysis. Asian Pacific J Allergy Immunol 2016; 34: 115-123.

https://doi.org/10.12932/AP0680.34.2.2016 DOI: https://doi.org/10.12932/AP0680.34.2.2016

Batalla A, Coto E, González-Lara L, González-Fernández D, Gómez J, Aranguren TF, et al. Association between single nucleotide polymorphisms IL17RA rs4819554 and IL17E rs79877597 and psoriasis in a Spanish cohort. J Dermatol Sci 2015; 80: 111-115.

https://doi.org/10.1016/j.jdermsci.2015.06.011 DOI: https://doi.org/10.1016/j.jdermsci.2015.06.011

Małgorzata SW, Nedoszytko B, Olszewska B, Roszkiewicz J, Glen J, Zabłotna M, et al. The role of polymorphism of interleukin-2, -10, -13 and TNF-α genes in cutaneous T-cell lymphoma pathogenesis. Adv Dermatology Allergol 2016; 33: 429-434.

https://doi.org/10.5114/ada.2016.63881 DOI: https://doi.org/10.5114/ada.2016.63881

Olszewska B, Gleń J, Zabłotna M, Nowicki RJ, Sokołowska-Wojdyło M. The polymorphisms of IL-6/STAT3 signaling pathway may contribute to cutaneous T-cell lymphomas susceptibility. Arch Dermatol Res 2020; 313: 1-7.

https://doi.org/10.1007/s00403-020-02062-5 DOI: https://doi.org/10.1007/s00403-020-02062-5

Kołkowski K, Sokołowska-Wojdyło M. Safety and danger of biologic treatments in psoriasis in context of cutaneous T-cell lymphoma (CTCL). Adv Dermatology Allergol 2021; 38: 953-960.

https://doi.org/10.5114/ada.2021.107553 DOI: https://doi.org/10.5114/ada.2021.107553

Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009; 9: 556-667.

https://doi.org/10.1038/nri2586 DOI: https://doi.org/10.1038/nri2586

Wang K, Kim MK, DiCaro G, Wong J, Shalapour S, Wan J, et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 2014; 41: 1052-1063.

https://doi.org/10.1016/j.immuni.2014.11.009 DOI: https://doi.org/10.1016/j.immuni.2014.11.009

Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, et al. Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol 2015; 45: 922-931.

https://doi.org/10.1002/eji.201445052 DOI: https://doi.org/10.1002/eji.201445052

Li L, Tian YL, Lv XM, Yu HF, Xie YY, Wang JD, et al. Association analysis of IL-17A and IL-17F polymorphisms in Chinese women with cervical cancer. Genet Mol Res 2015; 14: 12178-12183.

https://doi.org/10.4238/2015.October.9.6 DOI: https://doi.org/10.4238/2015.October.9.6

Fanok MH, Sun A, Fogli LK, Narendran V, Eckstein M, Kannan K, et al. Role of dysregulated cytokine signaling and bacterial triggers in the pathogenesis of cutaneous T-cell lymphoma. J Invest Dermatol 2018; 138: 1116-11125.

https://doi.org/10.1016/j.jid.2017.10.028 DOI: https://doi.org/10.1016/j.jid.2017.10.028

Licht P, Mailänder V. Transcriptional heterogeneity and the microbiome of cutaneous t-cell lymphoma. Cells 2022; 11: 328-331.

https://doi.org/10.3390/cells11030328 DOI: https://doi.org/10.3390/cells11030328

Nguyen V, Huggins RH, Lertsburapa T, Bauer K, Rademaker A, Gerami P, et al. Cutaneous T-cell lymphoma and Staphylococcus aureus colonization. J Am Acad Dermatol 2008; 59: 949-952.

https://doi.org/10.1016/j.jaad.2008.08.030 DOI: https://doi.org/10.1016/j.jaad.2008.08.030

Jackow CM, Cather JC, Hearne V, Asano AT, Musser JM, Duvic M. Association of erythrodermic cutaneous T-cell lymphoma, superantigen- positive Staphylococcus aureus, and oligoclonal T-cell receptor Vβ gene expansion. Blood 1997; 89: 32-40. DOI: https://doi.org/10.1182/blood.V89.1.32

https://doi.org/10.1182/blood.V89.1.32.32_32_40 DOI: https://doi.org/10.1182/blood.V89.1.32.32_32_40

Krejsgaard T, Ralfkiaer U, Clasen-Linde E, Eriksen KW, Kopp KL, Bonefeld CM, et al. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/stat3 signaling pathway. J Invest Dermatol 2011; 131: 1331-13338.

https://doi.org/10.1038/jid.2011.27 DOI: https://doi.org/10.1038/jid.2011.27

Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Pallesen EMH, Gluud M, et al. Staphylococcus aureus induces signal transducer and activator of transcription 5-dependent miR-155 expression in cutaneous T-cell lymphoma. J Invest Dermatol 2021; 141: 2449-2458.

https://doi.org/10.1016/j.jid.2021.01.038 DOI: https://doi.org/10.1016/j.jid.2021.01.038

Sugaya M. Clinical guidelines and new molecular targets for cutaneous lymphomas. Int J Mol Sci 2021; 22: 11079.

https://doi.org/10.3390/ijms222011079 DOI: https://doi.org/10.3390/ijms222011079

Lindahl LM, Willerslev-Olsen A, Gjerdrum LMR, Nielsen PR, Blümel E, Rittig AH, et al. Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood 2019; 134:1072-1083.

https://doi.org/10.1182/blood.2018888107 DOI: https://doi.org/10.1182/blood.2018888107

Fujii K. Pathogenesis of cutaneous T cell lymphoma: involvement of staphylococcus aureus. J Dermatol 2021; 49: 202-209.

https://doi.org/10.1111/1346-8138.16288 DOI: https://doi.org/10.1111/1346-8138.16288

Suga H, Sugaya M, Miyagaki T, Ohmatsu H, Kawaguchi M, Takahashi N, et al. Skin barrier dysfunction and low antimicrobial peptide expression in cutaneous T-cell lymphoma. Clin Cancer Res 2014; 20: 4339-4348.

https://doi.org/10.1158/1078-0432.CCR-14-0077 DOI: https://doi.org/10.1158/1078-0432.CCR-14-0077

Wolk K, Mitsui H, Witte K, Gellrich S, Gulati N, Humme D, et al. Deficient cutaneous antibacterial competence in cutaneous T-cell lymphomas: role of Th2-mediated biased Th17 function. Clin Cancer Res 2014; 20: 5507-5516.

https://doi.org/10.1158/1078-0432.CCR-14-0707 DOI: https://doi.org/10.1158/1078-0432.CCR-14-0707

Cirée A, Michel L, Camilleri-Bröet S, Louis FJ, Oster M, Flageul B, et al. Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and Sezary syndrome). Int J Cancer 2004; 112: 113-120.

https://doi.org/10.1002/ijc.20373 DOI: https://doi.org/10.1002/ijc.20373

Olszewska B, Żawrocki A, Gleń J, Lakomy J, Karczewska J, Zabłotna M, et al. Interleukin-31 is overexpressed in skin and serum in cutaneous T-cell lymphomas but does not correlate to pruritus. Adv Dermatology Allergol 2020; 39: 81-87.

https://doi.org/10.5114/ada.2020.100824 DOI: https://doi.org/10.5114/ada.2020.100824

Additional Files

Published

2022-09-21

How to Cite

Kołkowski, K., Jolanta Gleń, Berenika Olszewska, Monika Zabłotna, Nowicki, R. J., & Małgorzata Sokołowska-Wojdyło. (2022). Interleukin-17 Genes Polymorphisms are Significantly Associated with Cutaneous T-cell Lymphoma Susceptibility. Acta Dermato-Venereologica, 102, adv00777. https://doi.org/10.2340/actadv.v102.2416

Issue

Section

Articles

Categories