Risk of Skin Cancer and Actinic Keratosis in Patients with Rosacea: A Nationwide Population-based Cohort Study
DOI:
https://doi.org/10.2340/actadv.v102.2563Keywords:
Rosacea, Actinic keratosis, basal cell carcinoma, squamous cell carcinomaAbstract
The association between rosacea and skin cancer remains inconclusive, with conflicting reports. The aim of this nationwide population-based cohort study was to determine the risk of skin cancer in patients with rosacea. A rosacea cohort (n = 11,420) was formulated and evaluated from 2010 to 2019. The incidence rate ratios of actinic keratosis, cutaneous melanoma, keratinocyte carcinoma and gastric, colorectal, and liver cancer were analysed in comparison with a matched control group, and multivariable stratified Cox proportional hazards model analysis was performed. The risk of actinic keratosis and keratinocyte carcinoma was increased in the rosacea group compared with the control group, with adjusted hazard ratios of 6.05 (95% confidence interval 3.63–10.09) and 2.66 (1.53–4.61), respectively. The risk of cutaneous melanoma and gastric, colorectal and liver cancer was not increased, with adjusted hazard ratios of 1.69 (0.25–11.37), 0.81 (0.59–1.10), 0.91 (0.69–1.18) and 1.32 (0.89–1.95), respectively. These results reveal an increased risk of actinic keratosis and keratinocyte carcinoma in patients with rosacea.
Downloads
References
Ahn CS, Huang WW. Rosacea pathogenesis. Dermatol Clin 2018; 36: 81-86.
https://doi.org/10.1016/j.det.2017.11.001 DOI: https://doi.org/10.1016/j.det.2017.11.001
Yamasaki K, Gallo RL. The molecular pathology of rosacea. J Dermatol Sci 2009; 55: 77-81.
https://doi.org/10.1016/j.jdermsci.2009.04.007 DOI: https://doi.org/10.1016/j.jdermsci.2009.04.007
Holmes AD, Spoendlin J, Chien AL, Baldwin H, Chang ALS. Evidence-based update on rosacea comorbidities and their common physiologic pathways. J Am Acad Dermatol 2018; 78: 156-166.
https://doi.org/10.1016/j.jaad.2017.07.055 DOI: https://doi.org/10.1016/j.jaad.2017.07.055
Haber R, El Gemayel M. Comorbidities in rosacea: a systematic review and update. J Am Acad Dermatol 2018; 78: 786-792.
https://doi.org/10.1016/j.jaad.2017.09.016 DOI: https://doi.org/10.1016/j.jaad.2017.09.016
Hua T-C, Chung P-I, Chen Y-J, Wu L-C, Chen Y-D, Hwang C-Y, et al. Cardiovascular comorbidities in patients with rosacea: a nationwide case-control study from Taiwan. J Am Acad Dermatol 2015; 73: 249-254.
https://doi.org/10.1016/j.jaad.2015.04.028 DOI: https://doi.org/10.1016/j.jaad.2015.04.028
Choi D, Choi S, Choi S, Park SM, Yoon HS. Association of rosacea with cardiovascular disease: a retrospective cohort study. J Am Heart Assoc 2021; 10: e020671.
https://doi.org/10.1161/JAHA.120.020671 DOI: https://doi.org/10.1161/JAHA.120.020671
Tang L, Wang K. Chronic inflammation in skin malignancies. J Mol Signal 2016; 11: 2.
https://doi.org/10.5334/1750-2187-11-2 DOI: https://doi.org/10.5334/1750-2187-11-2
Hensler S, Mueller MM. Inflammation and skin cancer: old pals telling new stories. Cancer J 2013; 19: 517-524.
https://doi.org/10.1097/PPO.0000000000000010 DOI: https://doi.org/10.1097/PPO.0000000000000010
Cho S, Shin JY, Kim HJ, Eun SJ, Kang S, Jang WM, et al. Chasms in achievement of recommended diabetes care among geographic regions in Korea. J Korean Med Sci 2019; 34: e190.
https://doi.org/10.3346/jkms.2019.34.e190 DOI: https://doi.org/10.3346/jkms.2019.34.e190
Kim JA, Yoon S, Kim LY, Kim DS. Towards actualizing the value potential of Korea Health Insurance Review and Assessment (HIRA) data as a resource for health research: Strengths, limitations, applications, and strategies for optimal use of HIRA data. J Korean Med Sci 2017; 32: 718-728.
https://doi.org/10.3346/jkms.2017.32.5.718 DOI: https://doi.org/10.3346/jkms.2017.32.5.718
Wu CY, Chang YT, Juan CK, Shieh JJ, Lin YP, Liu HN, et al. Risk of inflammatory bowel disease in patients with rosacea: results from a nationwide cohort study in Taiwan. J Am Acad Dermatol 2017; 76: 911-917.
https://doi.org/10.1016/j.jaad.2016.11.065 DOI: https://doi.org/10.1016/j.jaad.2016.11.065
Nguyen TXT, Han M, Oh JK. The economic burden of cancers attributable to smoking in Korea, 2014. Tob Induc Dis 2019; 17: 15.
https://doi.org/10.18332/tid/102673 DOI: https://doi.org/10.18332/tid/102673
Suh M, Song S, Cho HN, Park B, Jun JK, Choi E, et al. Trends in participation rates for the national cancer screening program in Korea, 2002-2012. Cancer Res Treat 2017; 49: 798-806.
https://doi.org/10.4143/crt.2016.186 DOI: https://doi.org/10.4143/crt.2016.186
Wollina U. Is rosacea a systemic disease? Clin Dermatol 2019; 37: 629-635.
https://doi.org/10.1016/j.clindermatol.2019.07.032 DOI: https://doi.org/10.1016/j.clindermatol.2019.07.032
Morss-Walton P, McGee JS. Rosacea, not just skin deep: understanding the systemic disease burden. Clin Dermatol 2021; 39: 695-700.
https://doi.org/10.1016/j.clindermatol.2020.08.006 DOI: https://doi.org/10.1016/j.clindermatol.2020.08.006
Li WQ, Zhang M, Danby FW, Han J, Qureshi AA. Personal history of rosacea and risk of incident cancer among women in the US. Br J Cancer 2015; 113: 520-523.
https://doi.org/10.1038/bjc.2015.217 DOI: https://doi.org/10.1038/bjc.2015.217
Egeberg A, Fowler JF, Jr., Gislason GH, Thyssen JP. Rosacea and risk of cancer in Denmark. Cancer Epidemiol 2017; 47: 76-80.
https://doi.org/10.1016/j.canep.2017.01.006 DOI: https://doi.org/10.1016/j.canep.2017.01.006
Wu C-Y, Chang T-H, Ho H, Chang Y-T, Li C-P, Wu C-Y. Is rosacea a risk factor for cancer: a population-based cohort study in Taiwan. Dermatol Sin 2020; 38: 15-21.
https://doi.org/10.4103/ds.ds_30_19 DOI: https://doi.org/10.4103/ds.ds_30_19
Mc Aleer MA, Lacey N, Powell FC. The pathophysiology of rosacea. G Ital Dermatol Venereol 2009; 144: 663-671.
Xiang F, Lucas R, Hales S, Neale R. Incidence of nonmelanoma skin cancer in relation to ambient UV radiation in white populations, 1978-2012: empirical relationships. JAMA Dermatol 2014; 150: 1063-1071.
https://doi.org/10.1001/jamadermatol.2014.762 DOI: https://doi.org/10.1001/jamadermatol.2014.762
Kim HS, Cho EA, Bae JM, Yu DS, Oh ST, Kang H, et al. Recent trend in the incidence of premalignant and malignant skin lesions in Korea between 1991 and 2006. J Korean Med Sci 2010; 25: 924-929.
https://doi.org/10.3346/jkms.2010.25.6.924 DOI: https://doi.org/10.3346/jkms.2010.25.6.924
Aponte JL, Chiano MN, Yerges-Armstrong LM, Hinds DA, Tian C, Gupta A, et al. Assessment of rosacea symptom severity by genome-wide association study and expression analysis highlights immuno-inflammatory and skin pigmentation genes. Hum Mol Genet 2018; 27: 2762-2772.
https://doi.org/10.1093/hmg/ddy184 DOI: https://doi.org/10.1093/hmg/ddy184
Zhang M, Song F, Liang L, Nan H, Zhang J, Liu H, et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum Mol Genet 2013; 22: 2948-2959.
https://doi.org/10.1093/hmg/ddt142 DOI: https://doi.org/10.1093/hmg/ddt142
Jacobs LC, Liu F, Pardo LM, Hofman A, Uitterlinden AG, Kayser M, et al. IRF4, MC1R and TYR genes are risk factors for actinic keratosis independent of skin color. Hum Mol Genet 2015; 24: 3296-3303.
https://doi.org/10.1093/hmg/ddv076 DOI: https://doi.org/10.1093/hmg/ddv076
Armstrong BK, Kricker A. How much melanoma is caused by sun exposure? Melanoma Res 1993; 3: 395-401.
https://doi.org/10.1097/00008390-199311000-00002 DOI: https://doi.org/10.1097/00008390-199311000-00002
Kim I, He Y-Y. Ultraviolet radiation-induced non-melanoma skin cancer: regulation of DNA damage repair and inflammation. Genes Dis 2014; 1: 188-198.
https://doi.org/10.1016/j.gendis.2014.08.005 DOI: https://doi.org/10.1016/j.gendis.2014.08.005
Jang HS, Kim JH, Park KH, Lee JS, Bae JM, Oh BH, et al. Comparison of melanoma subtypes among Korean patients by morphologic features and ultraviolet exposure. Ann Dermatol 2014; 26: 485-490.
https://doi.org/10.5021/ad.2014.26.4.485 DOI: https://doi.org/10.5021/ad.2014.26.4.485
Alexis AF, Callender VD, Baldwin HE, Desai SR, Rendon MI, Taylor SC. Global epidemiology and clinical spectrum of rosacea, highlighting skin of color: review and clinical practice experience. J Am Acad Dermatol 2019; 80: 1722-1729.e1727.
https://doi.org/10.1016/j.jaad.2018.08.049 DOI: https://doi.org/10.1016/j.jaad.2018.08.049
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Soo Ick Cho, Hanjae Lee, Soyun Cho
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.