Determinants of 25-hydroxyvitamin D Status in a Cutaneous Melanoma Population
DOI:
https://doi.org/10.2340/actadv.v102.262Keywords:
melanoma, vitamin D, body mass indexAbstract
Vitamin D status is influenced by well-known determinants, but factors associated with low 25-hydroxyvitamin D levels in the cutaneous melanoma population are not well defined. The aim of this study was to confirm the well-known determinants and to assess new determinants for 25-hydroxyvitamin D levels in a cutaneous melanoma population. In a prospectively included cohort of 387 patients with cutaneous melanoma the association of 25-hydroxyvitamin D levels with sex, age, body mass index, time of blood withdrawal, Fitzpatrick phototype, vitamin D supplementation, score for intensity of lifetime sun exposure, smoking, education level, hair and skin colour, eye colour, total number of benign naevi, freckles and parameters of chronic sun damage was investigated. In addition, 25-hydroxyvitamin D levels were correlated with pathological parameters of the primary tumour and melanoma stage (8th edition of the American Joint Committee on Cancer (AJCC). Univariate and multivariate logistic regressions were performed using R software. The following factors had a significant effect on vitamin D status: body mass index, seasonal time of blood sampling, vitamin D supplementation, and a subtype of skin, and hair colour.
Downloads
References
International Agency for Research on Cancer, World Health Organization. Factsheets melanoma, globocan 2020. [accessed January 4th, 2022] Available from: https://gco.iarc.fr/today/data/factsheets/cancers/16-Melanoma-of-skin-fact-sheet.pdf.
Melanoma of the skin - Cancer Stat Facts. National Cancer Institute SEER program. [accessed January 4th, 2022] Available from: https://seer.cancer.gov/statfacts/html/melan.html.
Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med 2018; 50: 1-14.
https://doi.org/10.1038/s12276-018-0038-9 DOI: https://doi.org/10.1038/s12276-018-0038-9
Slominski A, Semak I, Zjawiony J, Wortsman J, Li W, Szczesniewski A, et al. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J 2005; 272: 4080-4090.
https://doi.org/10.1111/j.1742-4658.2005.04819.x DOI: https://doi.org/10.1111/j.1742-4658.2005.04819.x
Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW. A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catlysis with cytocrhome P450scc (CYP11A1). Proc Natl Acad Sci USA 2003; 100: 14754-14759.
https://doi.org/10.1073/pnas.2336107100 DOI: https://doi.org/10.1073/pnas.2336107100
Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EK, Nguyen MN, et al. In vivo evidence for a novel pathway of vitamin D- metabolism initiated by P450scc and modified by CYP27B1. FASEB J 2012; 26: 3901-3915.
https://doi.org/10.1096/fj.12-208975 DOI: https://doi.org/10.1096/fj.12-208975
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK, et al. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151: 25-37.
https://doi.org/10.1016/j.jsbmb.2014.11.010 DOI: https://doi.org/10.1016/j.jsbmb.2014.11.010
Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, et al. Photoprotective properties of vitamin D and lumisterol hydroxyderivatives. Cell Biochem Biophys 2020; 78: 165-180.
https://doi.org/10.1007/s12013-020-00913-6 DOI: https://doi.org/10.1007/s12013-020-00913-6
Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 2009; 19: 73-78.
https://doi.org/10.1016/j.annepidem.2007.12.001 DOI: https://doi.org/10.1016/j.annepidem.2007.12.001
Kowalówka M, Główka AK, Karaźniewicz-Łada M, Kosewski G. Clinical significance of analysis of vitamin d status in various diseases. Nutrients 2020; 12: 2788.
https://doi.org/10.3390/nu12092788 DOI: https://doi.org/10.3390/nu12092788
Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. Acta Derm Venereol 2011; 91: 115-224.
https://doi.org/10.2340/00015555-0980 DOI: https://doi.org/10.2340/00015555-0980
Vaughan-Shaw PG, O'Sullivan F, Farrington SM, Theodoratou E, Campbell H, Dunlop MG, et al. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: systematic review and meta-analysis. Br J Cancer 2017; 116: 1092-1110.
https://doi.org/10.1038/bjc.2017.44 DOI: https://doi.org/10.1038/bjc.2017.44
Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D, et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab 2013; 98: E1283-E1304.
https://doi.org/10.1210/jc.2013-1195 DOI: https://doi.org/10.1210/jc.2013-1195
Slominski AT, Brożyna AA, Zmijewski MA, Jóźwicki W, Jetten AM, Mason RS, et al. Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Lab Invest 2017; 97: 706-724.
https://doi.org/10.1038/labinvest.2017.3 DOI: https://doi.org/10.1038/labinvest.2017.3
Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim TK, Janjetovic Z, et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol 2018; 177: 159-170.
https://doi.org/10.1016/j.jsbmb.2017.06.013 DOI: https://doi.org/10.1016/j.jsbmb.2017.06.013
Newton-Bishop JA, Beswick S, Randerson-Moor J, Chang YM, Affleck P, Elliott F, et al. Serum 25-hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma. J Clin Oncol 2009; 27: 5439-5444.
https://doi.org/10.1200/JCO.2009.22.1135 DOI: https://doi.org/10.1200/JCO.2009.22.1135
Newton-Bishop JA, Davies JR, Latheef F, Randerson-Moor J, Chan M, Gascoyne J, et al. 25-Hydroxyvitamin D2/D3 levels and factors associated with systemic inflammation and melanoma survival in the Leeds Melanoma Cohort. Int J Cancer 2015; 136: 2890-2899.
https://doi.org/10.1002/ijc.29334 DOI: https://doi.org/10.1002/ijc.29334
Gambichler T, Bindsteiner M, Hoxtermann S, Kreuter A. Serum 25-hydroxyvitamin D serum levels in a large German cohort of patients with melanoma. Br J Dermatol 2013; 168: 625-628.
https://doi.org/10.1111/j.1365-2133.2012.11212.x DOI: https://doi.org/10.1111/j.1365-2133.2012.11212.x
Bade B, Zdebik A, Wagenpfeil S, Gräber S, Geisel J, Vogt T, et al. Low serum 25-hydroxyvitamin d concentrations are associated with increased risk for melanoma and unfavourable prognosis. PLoS ONE 2014; 9: e112863.
https://doi.org/10.1371/journal.pone.0112863 DOI: https://doi.org/10.1371/journal.pone.0112863
Wyatt C, Lucas RM, Hurst C, Kimlin MG. Vitamin D deficiency at melanoma diagnosis is associated with higher Breslow thickness. PLoS ONE 2015; 10: e0126394.
https://doi.org/10.1371/journal.pone.0126394 DOI: https://doi.org/10.1371/journal.pone.0126394
Tierman D, McEnery-Stonelake M, Joyce CJ, Nambudiri VE, Hodi FS, Claus EB, et al. Vitamin D deficiency is associated with a worse prognosis in metastatic melanoma. Oncotarget 2017; 8: 6873-6882.
https://doi.org/10.18632/oncotarget.14316 DOI: https://doi.org/10.18632/oncotarget.14316
Fang S, Sui D, Wang Y, Liu H, Chiang YJ, Ross MI, et al. Association of Vitamin D levels with outcome in patients with melanoma after adjustment for C-reactive protein. J Clin Oncol 2016; 34: 1741-1747.
https://doi.org/10.1200/JCO.2015.64.1357 DOI: https://doi.org/10.1200/JCO.2015.64.1357
Brożyna AA, Hoffman RM, Slominski AT. Relevance of vitamin D in melanoma development, progression and therapy. Anticancer Res 2020; 40: 473-489.
https://doi.org/10.21873/anticanres.13976 DOI: https://doi.org/10.21873/anticanres.13976
Gershenwald JE, Scolyer RA. Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Ann Surg Oncol 2018; 25: 2105-2110.
https://doi.org/10.1245/s10434-018-6513-7 DOI: https://doi.org/10.1245/s10434-018-6513-7
De Smedt J, Van Kelst S, Boecxstaens V, Stas M, Bogaerts K, Vanderschueren D, et al. Vitamin D supplementation in cutaneous malignant melanoma outcome (ViDMe): a randomized controlled trial. BMC Cancer 2017; 17: 562.
https://doi.org/10.1186/s12885-017-3538-4 DOI: https://doi.org/10.1186/s12885-017-3538-4
Thomas RL, Jiang L, Adams JS, Xu ZZ, Shen J, Janssen S, et al. Vitamin D metabolites and the gut microbiome in older men. Nat Commun 2020; 11: 5997.
https://doi.org/10.1038/s41467-020-19793-8 DOI: https://doi.org/10.1038/s41467-020-19793-8
Cattaruzza MS, Pisani D, Fidanza L, Gandini S, Marmo G, Narcisi A, et al. 25-Hydroxyvitamin D serum levels and melanoma risk: a case-control study and evidence synthesis of clinical epidemiological studies. Eur J Cancer Prev 2019; 28: 203-211.
https://doi.org/10.1097/CEJ.0000000000000437 DOI: https://doi.org/10.1097/CEJ.0000000000000437
Saiag P, Aegerter P, Vitoux D, Lebbé C, Wolkenstein P, Dupin N, et al. Prognostic value of 25-hydroxyvitamin D3 levels at diagnosis and during follow-up in melanoma patients. J Natl Cancer Inst 2015; 107: djv264.
https://doi.org/10.1093/jnci/djv264 DOI: https://doi.org/10.1093/jnci/djv264
Pereira-Santos M, Costa PR, Assis AM, Santos CA, Satnos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev 2015; 16: 341-349.
https://doi.org/10.1111/obr.12239 DOI: https://doi.org/10.1111/obr.12239
Walsh JS, Bowles S, Evans AL. Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes 2017; 24: 389-394.
https://doi.org/10.1097/MED.0000000000000371 DOI: https://doi.org/10.1097/MED.0000000000000371
Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, et al. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr 2016; 103: 1465-1471.
https://doi.org/10.3945/ajcn.115.120139 DOI: https://doi.org/10.3945/ajcn.115.120139
Macdonald HM, Mavroeidi A, Aucott LA, Diffey BL, Fraser WD, Ormerod AD, et al. Skin color change in Caucasian postmenopausal women predicts summer-winter change in 25-hydroxyvitamin D: findings from the ANSAViD cohort study. J Clin Endocrinol Metab 2011; 96: 1677-1686.
https://doi.org/10.1210/jc.2010-2032 DOI: https://doi.org/10.1210/jc.2010-2032
Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72: 690-693.
https://doi.org/10.1093/ajcn/72.3.690 DOI: https://doi.org/10.1093/ajcn/72.3.690
Winters SJ, Chennubhatla R, Wang C, Miller JJ. Influence of obesity on vitamin D-binding protein and 25-hydroxy vitamin D levels in African American and white women. Metabolism 2009; 58: 438-442.
https://doi.org/10.1016/j.metabol.2008.10.017 DOI: https://doi.org/10.1016/j.metabol.2008.10.017
Lim A, Shayan R, Varigos G. High serum vitamin D level correlates with better prognostic indicators in primary melanoma: a pilot study. Aust J Dermatol 2018; 59: 182-187.
https://doi.org/10.1111/ajd.12648 DOI: https://doi.org/10.1111/ajd.12648
Lombardo M, Vigezzi A, Ietto G, Franchi C, Lori V, Masci F, et al. Role of vitamin D serum levels in prevention of primary and recurrent melanoma. Sci Rep 2021; 11: 5815.
https://doi.org/10.1038/s41598-021-85294-3 DOI: https://doi.org/10.1038/s41598-021-85294-3
Published
How to Cite
License
Copyright (c) 2022 Julie De Smedt, Sofie Van Kelst, Laudine Janssen, Vivien Marasigan, Veerle Boecxstaens, Marguerite Stas, Dirk Vanderschueren, Ipek Guler, Kris Bogaerts, Katleen Vandenberghe, Oliver Bechter, Jaak Billen, Arjen Nikkels, Tine Strobbe, Gabriella Emri, Diether Lambrechts, Marjan Garmyn
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.