A Clinical Prediction Model for Surgical Site Infections in Dermatological Surgery
DOI:
https://doi.org/10.2340/00015555-2945Keywords:
surgical site infection, antibiotic prophylaxis, dermatological surgery, prediction modelAbstract
To adequately identify patients at risk for surgical site infection in dermatological surgery and effectively prescribe antibiotic prophylaxis, a prediction model may be helpful. Such a model was developed using data from 1,407 patients who underwent dermatological surgery without antibiotic prophylaxis. The multivariable logistic regression model included type of closure, tumour location and defect size as risk factors. Bootstrapping was used for internal validation. The overall performance of the model was good, with an area under the curve of 84.1%. The decision curve analysis showed that the model is potentially useful if one is willing to treat more than 8 patients with antibiotic prophylaxis to avoid one infection. For those who prefer more restrictive use of antibiotic prophylaxis, a default strategy of treating no patients at all with prophylaxis would be the best choice. External validation of the model is required before it can be widely applied.Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Xiaomeng Liu, Nicole W.J. Kelleners-Smeets, Melissa Sprengers, Vishal Hira, Klara Mosterd, Patty J. Nelemans
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.