Longitudinal Evaluation of Biomarkers in Wound Fluids from Venous Leg Ulcers and Split-thickness Skin Graft Donor Site Wounds Treated with a Protease-modulating Wound Dressing
DOI:
https://doi.org/10.2340/actadv.v102.325Keywords:
dressings, biomarker, proteomics, venous ulcer; exudateAbstract
Venous leg ulcers represent a clinical challenge and impair the quality of life of patients. This study examines impaired wound healing in venous leg ulcers at the molecular level. Protein expression patterns for biomarkers were analysed in venous leg ulcer wound fluids from 57 patients treated with a protease-modulating polyacrylate wound dressing for 12 weeks, and compared with exudates from 10 acute split-thickness wounds. Wound healing improved in the venous leg ulcer wounds: 61.4% of the 57 patients with venous leg ulcer achieved a relative wound area reduction of ≥ 40%, and 50.9% of the total 57 patients achieved a relative wound area reduction of ≥ 60%. Within the first 14 days, abundances of S100A8, S100A9, neutrophil elastase, matrix metalloproteinase-2, and fibronectin in venous leg ulcer exudates decreased significantly and remained stable, yet higher than in acute wounds. Interleukin-1β, tumour necrosis factor alpha, and matrix metalloproteinase-9 abundance ranges were similar in venous leg ulcers and acute wound fluids. Collagen (I) α1 abundance was higher in venous leg ulcer wound fluids and was not significantly regulated. Overall, significant biomarker changes occurred in the first 14 days before a clinically robust healing response in the venous leg ulcer cohort.
Downloads
References
Patton D, Avsar P, Sayeh A, Budri A, O'Connor T, Walsh S, et al. A meta-review of the impact of compression therapy on venous leg ulcer healing. Int Wound J 2022; Jul 18. [Online ahead of print].
https://doi.org/10.1111/iwj.13891 DOI: https://doi.org/10.1111/iwj.13891
O'Meara S, Cullum N, Nelson EA, Dumville JC. Compression for venous leg ulcers. Cochrane Database Syst Rev 2012; 11: CD000265.
https://doi.org/10.1002/14651858.CD000265.pub3 DOI: https://doi.org/10.1002/14651858.CD000265.pub3
Marston WA, Ennis WJ, Lantis JC, Kirsner RS, Galiano RD, Vanscheidt W, et al. Baseline factors affecting closure of venous leg ulcers. J Vasc Surg Venous Lymphat Disord 2017; 5: 829-835.e1.
https://doi.org/10.1016/j.jvsv.2017.06.017 DOI: https://doi.org/10.1016/j.jvsv.2017.06.017
Kantor J, Margolis DJ. A multicentre study of percentage change in venous leg ulcer area as a prognostic index of healing at 24 weeks. Br J Dermatol 2000; 142: 960-964.
https://doi.org/10.1046/j.1365-2133.2000.03478.x DOI: https://doi.org/10.1046/j.1365-2133.2000.03478.x
Guest JF, Fuller GW, Vowden P. Venous leg ulcer management in clinical practice in the UK: costs and outcomes. Int Wound J 2018; 15: 29-37.
https://doi.org/10.1111/iwj.12814 DOI: https://doi.org/10.1111/iwj.12814
Herrick S, Ashcroft G, Ireland G, Horan M, McCollum C, Ferguson M. Up-regulation of elastase in acute wounds of healthy aged humans and chronic venous leg ulcers are associated with matrix degradation. Lab Invest 1997; 77: 281-288.
Lauer G, Sollberg S, Cole M, Flamme I, Stürzebecher J, Mann K, et al. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 2000; 115: 12-18.
https://doi.org/10.1046/j.1523-1747.2000.00036.x DOI: https://doi.org/10.1046/j.1523-1747.2000.00036.x
Buchstein N, Hoffmann D, Smola H, Lang S, Paulsson M, Niemann C, et al. Alternative proteolytic processing of hepatocyte growth factor during wound repair. Am J Pathol 2009; 174: 2116-2128.
https://doi.org/10.2353/ajpath.2009.080597 DOI: https://doi.org/10.2353/ajpath.2009.080597
Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 1996; 4: 321-325.
https://doi.org/10.1046/j.1524-475X.1996.40307.x DOI: https://doi.org/10.1046/j.1524-475X.1996.40307.x
Trøstrup H, Lundquist R, Christensen LH, Jorgensen LN, Karlsmark T, Haab BB, et al. S100A8/A9 deficiency in nonhealing venous leg ulcers uncovered by multiplexed antibody microarray profiling. Br J Dermatol 2011; 165: 292-301.
https://doi.org/10.1111/j.1365-2133.2011.10384.x DOI: https://doi.org/10.1111/j.1365-2133.2011.10384.x
Harris IR, Yee KC, Walters CE, Cunliffe WJ, Kearney JN, Wood EJ, et al. Cytokine and protease levels in healing and non-healing chronic venous leg ulcers. Exp Dermatol 1995; 4: 342-349.
https://doi.org/10.1111/j.1600-0625.1995.tb00058.x DOI: https://doi.org/10.1111/j.1600-0625.1995.tb00058.x
Stacey MC, Phillips SA, Farrokhyar F, Swaine JM. Evaluation of wound fluid biomarkers to determine healing in adults with venous leg ulcers: a prospective study. Wound Repair Regen 2019; 27: 509-518.
https://doi.org/10.1111/wrr.12723 DOI: https://doi.org/10.1111/wrr.12723
Eming SA, Koch M, Krieger A, Brachvogel B, Kreft S, Bruckner-Tuderman L, et al. Differential proteomic analysis distinguishes tissue repair biomarker signatures in wound exudates obtained from normal healing and chronic wounds. J Proteome Res 2010; 9: 4758-4766.
https://doi.org/10.1021/pr100456d DOI: https://doi.org/10.1021/pr100456d
Hessian PA, Edgeworth J, Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol 1993; 53: 197-204.
https://doi.org/10.1002/jlb.53.2.197 DOI: https://doi.org/10.1002/jlb.53.2.197
Gallien S, Kim SY, Domon B. Large-scale targeted proteomics using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM). Mol Cell Proteomics 2015; 14: 1630-1644.
https://doi.org/10.1074/mcp.O114.043968 DOI: https://doi.org/10.1074/mcp.O114.043968
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinforma Oxf Engl 2010; 26: 966-968.
https://doi.org/10.1093/bioinformatics/btq054 DOI: https://doi.org/10.1093/bioinformatics/btq054
World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2013; 310: 2191-2194.
https://doi.org/10.1001/jama.2013.281053 DOI: https://doi.org/10.1001/jama.2013.281053
Harding KG, Krieg T, Eming SA, Flour MLF, Jawien A, Cencora A, et al. Efficacy and safety of the freeze-dried cultured human keratinocyte lysate, LyphoDerm 0.9%, in the treatment of hard-to-heal venous leg ulcers. Wound Repair Regen 2005; 13: 138-147.
https://doi.org/10.1111/j.1067-1927.2005.130204.x DOI: https://doi.org/10.1111/j.1067-1927.2005.130204.x
Humbert P, Faivre B, Véran Y, Debure C, Truchetet F, Bécherel PA, et al. Protease-modulating polyacrylate-based hydrogel stimulates wound bed preparation in venous leg ulcers - a randomized controlled trial. J Eur Acad Dermatol Venereol 2014; 28: 1742-1750.
https://doi.org/10.1111/jdv.12400 DOI: https://doi.org/10.1111/jdv.12400
Chaby G, Senet P, Ganry O, Caudron A, Thuillier D, Debure C, et al. Prognostic factors associated with healing of venous leg ulcers: a multicentre, prospective, cohort study. Br J Dermatol 2013; 169: 1106-1113.
https://doi.org/10.1111/bjd.12570 DOI: https://doi.org/10.1111/bjd.12570
Kurd SK, Hoffstad OJ, Bilker WB, Margolis DJ. Evaluation of the use of prognostic information for the care of individuals with venous leg ulcers or diabetic neuropathic foot ulcers. Wound Repair Regen 2009; 17: 318-325.
https://doi.org/10.1111/j.1524-475X.2009.00487.x DOI: https://doi.org/10.1111/j.1524-475X.2009.00487.x
Meaume S, Truchetet F, Cambazard F, Lok C, Debure C, Dalac S, et al. A randomized, controlled, double-blind prospective trial with a Lipido-Colloid Technology-Nano-OligoSaccharide Factor wound dressing in the local management of venous leg ulcers. Wound Repair Regen 2012; 20: 500-511.
https://doi.org/10.1111/j.1524-475X.2012.00797.x DOI: https://doi.org/10.1111/j.1524-475X.2012.00797.x
Brölmann FE, Eskes AM, Goslings JC, Niessen FB, de Bree R, Vahl AC, et al. Randomized clinical trial of donor-site wound dressings after split-skin grafting. Br J Surg 2013; 100: 619-627.
https://doi.org/10.1002/bjs.9045 DOI: https://doi.org/10.1002/bjs.9045
Sabino F, Egli FE, Savickas S, Holstein J, Kaspar D, Rollmann M, et al. Comparative degradomics of porcine and human wound exudates unravels biomarker candidates for assessment of wound healing progression in trauma patients. J Invest Dermatol 2018; 138: 413-422.
https://doi.org/10.1016/j.jid.2017.08.032 DOI: https://doi.org/10.1016/j.jid.2017.08.032
Kirketerp-Møller K, Doerfler P, Schoefmann N, Wolff-Winiski B, Niazi O, Pless V, et al. Biomarkers of skin graft healing in venous leg ulcers. Acta Derm Venereol 2022; 102: adv00749.
https://doi.org/10.2340/actadv.v102.201
Thorey IS, Roth J, Regenbogen J, Halle JP, Bittner M, Vogl T, et al. The Ca2+-binding proteins S100A8 and S100A9 are encoded by novel injury-regulated genes. J Biol Chem 2001; 276: 35818-35825.
https://doi.org/10.1074/jbc.M104871200 DOI: https://doi.org/10.1074/jbc.M104871200
Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 2003; 170: 3233-3242.
https://doi.org/10.4049/jimmunol.170.6.3233 DOI: https://doi.org/10.4049/jimmunol.170.6.3233
Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MAD, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13: 1042-1049.
https://doi.org/10.1038/nm1638 DOI: https://doi.org/10.1038/nm1638
Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999; 7: 442-452.
https://doi.org/10.1046/j.1524-475X.1999.00442.x DOI: https://doi.org/10.1046/j.1524-475X.1999.00442.x
Trøstrup H, Holstein P, Christophersen L, Jørgensen B, Karlsmark T, Høiby N, et al. S100A8/A9 is an important host defence mediator in neuropathic foot ulcers in patients with type 2 diabetes mellitus. Arch Dermatol Res 2016; 308: 347-355.
https://doi.org/10.1007/s00403-016-1646-7 DOI: https://doi.org/10.1007/s00403-016-1646-7
Salo T, Mäkelä M, Kylmäniemi M, Autio-Harmainen H, Larjava H. Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab Invest 1994; 70: 176-182.
Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 2008; 40: 1334-1347.
https://doi.org/10.1016/j.biocel.2007.10.024 DOI: https://doi.org/10.1016/j.biocel.2007.10.024
Norgauer J, Hildenbrand T, Idzko M, Panther E, Bandemir E, Hartmann M, et al. Elevated expression of extracellular matrix metalloproteinase inducer (CD147) and membrane-type matrix metalloproteinases in venous leg ulcers. Br J Dermatol 2002; 147: 1180-1186.
https://doi.org/10.1046/j.1365-2133.2002.05025.x DOI: https://doi.org/10.1046/j.1365-2133.2002.05025.x
Mwaura B, Mahendran B, Hynes N, Defreitas D, Avalos G, Adegbola T, et al. The impact of differential expression of extracellular matrix metalloproteinase inducer, matrix metalloproteinase-2, tissue inhibitor of matrix metalloproteinase-2 and PDGF-AA on the chronicity of venous leg ulcers. Eur J Vasc Endovasc Surg 2006; 31: 306-310.
https://doi.org/10.1016/j.ejvs.2005.08.007 DOI: https://doi.org/10.1016/j.ejvs.2005.08.007
Beidler SK, Douillet CD, Berndt DF, Keagy BA, Rich PB, Marston WA. Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy. Wound Repair Regen 2008; 16: 642-648.
https://doi.org/10.1111/j.1524-475X.2008.00415.x DOI: https://doi.org/10.1111/j.1524-475X.2008.00415.x
Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 1996; 4: 411-420.
https://doi.org/10.1046/j.1524-475X.1996.40404.x DOI: https://doi.org/10.1046/j.1524-475X.1996.40404.x
Kirketerp-Møller K, Doerfler P, Schoefmann N, Wolff-Winiski B, Niazi O, Pless V, et al. Biomarkers of skin graft healing in venous leg ulcers. Acta Derm Venereol 2022; 102: adv00749.
https://doi.org/10.2340/actadv.v102.201 DOI: https://doi.org/10.2340/actadv.v102.201
Hsu K, Chung YM, Endoh Y, Geczy CL. TLR9 ligands induce S100A8 in macrophages via a STAT3-dependent pathway which requires IL-10 and PGE2. PLoS One 2014; 9: e103629.
https://doi.org/10.1371/journal.pone.0103629 DOI: https://doi.org/10.1371/journal.pone.0103629
Lee MJ, Lee JK, Choi JW, Lee CS, Sim JH, Cho CH, et al. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis. PLoS One 2012; 7: e38801.
https://doi.org/10.1371/journal.pone.0038801 DOI: https://doi.org/10.1371/journal.pone.0038801
Xuan X, Li S, Lou X, Zheng X, Li Y, Wang F, et al. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2. Mol Biol Rep 2015; 42: 907-915.
https://doi.org/10.1007/s11033-014-3828-8 DOI: https://doi.org/10.1007/s11033-014-3828-8
Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, et al. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004; 23: 3550-3560.
https://doi.org/10.1038/sj.onc.1207383 DOI: https://doi.org/10.1038/sj.onc.1207383
Zillmer R, Trøstrup H, Karlsmark T, Ifversen P, Ågren MS. Duration of wound fluid secretion from chronic venous leg ulcers is critical for interleukin-1α, interleukin-1β, interleukin-8 levels and fibroblast activation. Arch Dermatol Res 2011; 303: 601-606.
https://doi.org/10.1007/s00403-011-1164-6 DOI: https://doi.org/10.1007/s00403-011-1164-6
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Jacek Mikosiński, Konstantinos Kalogeropoulos, Louise Bundgaard, Cathrine Agnete Larsen, Simonas Savickas, Aleksander Moldt Haack, Konrad Pańczak, Katarzyna Rybołowicz, Tomasz Grzela, Michał Olszewski, Piotr Ciszewski, Karina Sitek-Ziółkowska, Krystyna Twardowska-Saucha, Marek Karczewski, Daniel Rabczenko, Agnieszka Segiet, Patrycja Buczak-Kula, Erwin M. Schoof, Sabine A. Eming, Hans Smola, Ulrich auf dem Keller
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.