Performance of a Machine Learning Algorithm on Lesions with a High Preoperative Suspicion of Invasive Melanoma
DOI:
https://doi.org/10.2340/actadv.v104.40023Keywords:
Neural Networks, Computer, Melanoma, Dermoscopy, Supervised Machine Learning, Artificial IntelligenceAbstract
Abstract is missing (Short communication)
Downloads
References
Polesie S, Gillstedt M, Kittler H, Rinner C, Tschandl P, Paoli J. Assessment of melanoma thickness based on dermoscopy images: an open, web-based, international, diagnostic study. J Eur Acad Dermatol Venereol 2022; 36: 2002-2007.
https://doi.org/10.1111/jdv.18436 DOI: https://doi.org/10.1111/jdv.18436
Polesie S, Jergeus E, Gillstedt M, Ceder H, Dahlen Gyllencreutz J, Fougelberg J, et al. Can dermoscopy be used to predict if a melanoma is in situ or invasive? Dermatol Pract Concept 2021; 11: e2021079.
https://doi.org/10.5826/dpc.1103a79 DOI: https://doi.org/10.5826/dpc.1103a79
Polesie S, Sundback L, Gillstedt M, Ceder H, Dahlen Gyllencreutz J, Fougelberg J, et al. Interobserver agreement on dermoscopic features and their associations with in situ and invasive cutaneous melanomas. Acta Derm Venereol 2021; 101: adv00570.
https://doi.org/10.2340/actadv.v101.281 DOI: https://doi.org/10.2340/actadv.v101.281
Swedish guidelines for malignant melanoma [in Swedish], Version 6.0, last updated: December 14, 2021: Available from: https://kunskapsbanken.cancercentrum.se/globalassets/cancerdiagnoser/hud/vardprogram/nationellt-vardprogram-malignt-melanom.pdf
Gillstedt M, Hedlund E, Paoli J, Polesie S. Discrimination between invasive and in situ melanomas using a convolutional neural network. J Am Acad Dermatol 2022; 86: 647-649.
https://doi.org/10.1016/j.jaad.2021.02.012 DOI: https://doi.org/10.1016/j.jaad.2021.02.012
Gillstedt M, Mannius L, Paoli J, Dahlen Gyllencreutz J, Fougelberg J, Johansson Backman E, et al. Evaluation of melanoma thickness with clinical close-up and dermoscopic images using a convolutional neural network. Acta Derm Venereol 2022; 102: adv00790.
https://doi.org/10.2340/actadv.v102.2681 DOI: https://doi.org/10.2340/actadv.v102.2681
Polesie S, Gillstedt M, Ahlgren G, Ceder H, Dahlen Gyllencreutz J, Fougelberg J, et al. Discrimination between invasive and in situ melanomas using clinical close-up images and a de novo convolutional neural network. Front Med (Lausanne) 2021; 8: 723914.
https://doi.org/10.3389/fmed.2021.723914 DOI: https://doi.org/10.3389/fmed.2021.723914
Gillstedt M, Segerholm K, Mannius L, Paoli J, Polesie S. How does a convolutional neural network trained to differentiate between invasive melanoma and melanoma in situ generalize when assessing dysplastic naevi? Acta Derm Venereol 2023; 103: adv00891.
https://doi.org/10.2340/actadv.v103.4822 DOI: https://doi.org/10.2340/actadv.v103.4822
Hernandez-Rodriguez JC, Duran-Lopez L, Dominguez-Morales JP, Ortiz-Alvarez J, Conejo-Mir J, Pereyra-Rodriguez JJ. Prediction of melanoma Breslow thickness using Deep Transfer Learning Algorithms. Clin Exp Dermatol 2023; 10.1093/ced/llad107.
https://doi.org/10.1093/ced/llad107 DOI: https://doi.org/10.1093/ced/llad107
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Filippos Giannopoulos, Martin Gillstedt, Sofia Lindskogen, John Paoli, Sam Polesie
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.