Identifying Key Drivers in the Pathogenesis of Martorell Hypertensive Ischaemic Leg Ulcer: A Comparative Analysis with Chronic Venous Leg Ulcer

Authors

  • Jamila Hess Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
  • Marjam-Jeanette Barysch-Bonderer Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
  • Corsin Seeli Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
  • Julia Laube Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
  • Adhideb Ghosh Functional Genomis Center, University of Zurich and ETH Zurich, Zurich, Switzerland
  • Julia Deinsberger Department of Dermatology, Medical University of Vienna, Vienna, Austria
  • Benedikt Weber Department of Dermatology, Medical University of Vienna, Vienna, Austria
  • Jürg Hafner Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
  • Barbara Meier-Schiesser Department of Dermatology, University Hospital Zurich, Zurich, Switzerland

DOI:

https://doi.org/10.2340/actadv.v104.40090

Keywords:

Martorell hypertensive ischaemic leg ulcer, inflammation, STAC2

Abstract

Martorell hypertensive ischaemic leg ulcer (Martorell HYTILU) is a rare but significant cause of distal leg ulcers. Although hypertension and diabetes are known factors in its development, the precise pathogenesis of Martorell HYTILU remains elusive. To reach a better understanding of Martorell HYTILU, transcriptomic analysis was conducted through RNA sequencing and immunohistochemical comparison of Martorell HYTILU (n = 17) with chronic venous ulcers (n = 4) and healthy skin (n = 4). Gene expression analysis showed a marked activation of immune-related pathways in both Martorell HYTILU and chronic venous ulcers compared with healthy skin. Notably, neutrophil activity was substantially higher in Martorell HYTILU. While pathway analysis revealed a mild downregulation of several immune pathways in Martorell HYTILU compared with chronic venous ulcers, keratinization, cornification, and epidermis development were significantly upregulated in Martorell HYTILU. Additionally, STAC2, a gene encoding for a protein promoting the expression of the calcium channel Cav1.1, was significantly upregulated in Martorell HYTILU and was detected perivascularly in situ (Martorell HYTILU n = 24; chronic venous ulcers n = 9, healthy skin n = 11). The high expression of STAC2 in Martorell HYTILU suggests that increased calcium influx plays an important role in the pathogenesis of the disease. Consequently, calcium channel antagonists could be a promising treatment avenue for Martorell HYTILU.

Downloads

Download data is not yet available.

References

Glutz von Blotzheim L, Tanner FC, Noll G, Brock M, Fischler M, Hafner J, et al. Pulmonary hypertension in patients with Martorell hypertensive leg ulcer: a case control study. Respir Res 2012; 13: 45.

https://doi.org/10.1186/1465-9921-13-45 DOI: https://doi.org/10.1186/1465-9921-13-45

Alavi A, Mayer D, Hafner J, Sibbald RG. Martorell hypertensive ischemic leg ulcer: an underdiagnosed Entity©. Adv Skin Wound Care 2012; 25: 563-574.

https://doi.org/10.1097/01.ASW.0000423442.08531.fb DOI: https://doi.org/10.1097/01.ASW.0000423442.08531.fb

Deinsberger J, Brugger J, Tschandl P, Meier-Schiesser B, Anzengruber F, Bossart S, et al. Differentiating arteriolosclerotic ulcers of Martorell from other types of leg ulcers based on vascular histomorphology. Acta Derm Venereol 2021; 101: adv00449.

https://doi.org/10.2340/00015555-3804 DOI: https://doi.org/10.2340/00015555-3804

Hafner J, Nobbe S, Partsch H, Läuchli S, Mayer D, Amann-Vesti B, et al. Martorell hypertensive ischemic leg ulcer: a model of ischemic subcutaneous arteriolosclerosis. Arch Dermatol 2010; 146: 961-968.

https://doi.org/10.1001/archdermatol.2010.224 DOI: https://doi.org/10.1001/archdermatol.2010.224

Deinsberger J, Sirovina S, Bromberger S, Böhler K, Vychytil A, Meier-Schiesser B, et al. Microstructural comparative analysis of calcification patterns in calciphylaxis versus arteriolosclerotic ulcer of Martorell. Eur J Dermatol 2021; 31: 705-711.

https://doi.org/10.1684/ejd.2021.4182 DOI: https://doi.org/10.1684/ejd.2021.4182

Deinsberger J, Felhofer M, Kläger JP, Petzelbauer P, Gierlinger N, Weber B. Raman spectroscopy reveals collagen and phospholipids as major components of hyalinosis in the arteriolosclerotic ulcer of Martorell. J Eur Acad Dermatol Venereol 2021; 35: 2308-2316.

https://doi.org/10.1111/jdv.17573 DOI: https://doi.org/10.1111/jdv.17573

Weber B, Deinsberger J, Hafner J, Beltraminelli H, Tzaneva S, Böhler K. Localization-mapping of arteriolosclerotic ulcers of Martorell using two-dimensional computational rendering reveals a predominant location on the mid-lateral lower leg. J Eur Acad Dermatol Venereol 2021; 35: e40-e42.

https://doi.org/10.1111/jdv.16787 DOI: https://doi.org/10.1111/jdv.16787

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34: i884-i890.

https://doi.org/10.1093/bioinformatics/bty560 DOI: https://doi.org/10.1093/bioinformatics/bty560

Bray NL, Pimentel H, Melsted P, Pachter L. Erratum: Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016; 34: 525-527. Erratum in: Nat Biotechnol 2016; 34: 888.

https://doi.org/10.1038/nbt.3519 DOI: https://doi.org/10.1038/nbt.3519

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139-140.

https://doi.org/10.1093/bioinformatics/btp616 DOI: https://doi.org/10.1093/bioinformatics/btp616

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: aA universal enrichment tool for interpreting omics data. Innovation (Camb) 2021; 2: 100141.

https://doi.org/10.1016/j.xinn.2021.100141 DOI: https://doi.org/10.1016/j.xinn.2021.100141

GeneCards - The human gene database (Internet). Rehovot, Israel: Crown Human Genome Center & Weizmann Institute of Science; 2002 [last accessed August 2022]. Available from: https://www.genecards.org/.

Nigwekar SU, Bloch DB, Nazarian RM, Vermeer C, Booth SL, Xu D, et al. Vitamin K-dependent carboxylation of matrix Gla protein influences the risk of calciphylaxis. J Am Soc Nephrol 2017; 28: 1717-1722.

https://doi.org/10.1681/ASN.2016060651 DOI: https://doi.org/10.1681/ASN.2016060651

Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 2008; 199: 271-277.

https://doi.org/10.1016/j.atherosclerosis.2007.11.031 DOI: https://doi.org/10.1016/j.atherosclerosis.2007.11.031

Cho HJ, Cho HJ, Kim HS. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 2009; 11: 206-213.

https://doi.org/10.1007/s11883-009-0032-8 DOI: https://doi.org/10.1007/s11883-009-0032-8

Campiglio M, Costé de Bagneaux P, Ortner NJ, Tuluc P, Van Petegem F, Flucher BE. STAC proteins associate to the IQ domain of CaV1.2 and inhibit calcium-dependent inactivation. Proc Natl Acad Sci U S A 2018; 115: 1376-1381.

https://doi.org/10.1073/pnas.1715997115 DOI: https://doi.org/10.1073/pnas.1715997115

Wong King Yuen SM, Campiglio M, Tung CC, Flucher BE, Van Petegem F. Structural insights into binding of STAC proteins to voltage-gated calcium channels. Proc Natl Acad Sci U S A 2017; 114: E9520-E9528.

https://doi.org/10.1073/pnas.1708852114 DOI: https://doi.org/10.1073/pnas.1708852114

Veith AP, Henderson K, Spencer A, Silgar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146: 97-125.

https://doi.org/10.1016/j.addr.2018.09.010 DOI: https://doi.org/10.1016/j.addr.2018.09.010

Jünger M, Steins A, Hahn M, Häfner HM. Microcirculatory dysfunction in chronic venous insufficiency (CVI). Microcirculation 2000; 7: 3-12.

https://doi.org/10.1080/713774003 DOI: https://doi.org/10.1080/713774003

Zinder R, Cooley R, Vlad LG, Molnar JA. Vitamin A and wound healing. Nutr Clin Pract 2019; 34: 839-849.

https://doi.org/10.1002/ncp.10420 DOI: https://doi.org/10.1002/ncp.10420

Raffetto JD. Pathophysiology of chronic venous disease and venous ulcers. Surg Clin North Am 2018; 98: 337-347.

https://doi.org/10.1016/j.suc.2017.11.002 DOI: https://doi.org/10.1016/j.suc.2017.11.002

Liu K, Chen LE, Seaber AV, Johnson GW, Urbaniak JR. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle. J Orthop Res 1999; 17: 88-95.

https://doi.org/10.1002/jor.1100170114 DOI: https://doi.org/10.1002/jor.1100170114

Nishio N, Ito S, Suzuki H, Isobe KI. Antibodies to wounded tissue enhance cutaneous wound healing. Immunology 2009; 128: 369-380.

https://doi.org/10.1111/j.1365-2567.2009.03119.x DOI: https://doi.org/10.1111/j.1365-2567.2009.03119.x

Peschen M, Lahaye T, Hennig B, Weyl A, Simon JC, Vanscheidt W. Expression of the adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insufficiency. Acta Derm Venereol 1999; 79: 27-32.

https://doi.org/10.1080/000155599750011651 DOI: https://doi.org/10.1080/000155599750011651

Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015;173: 370-378.

https://doi.org/10.1111/bjd.13954 DOI: https://doi.org/10.1111/bjd.13954

Deo PN, Deshmukh R. Pathophysiology of keratinization. J Oral Maxillofac Pathol 2018; 22: 86-91.

https://doi.org/10.4103/jomfp.JOMFP_195_16 DOI: https://doi.org/10.4103/jomfp.JOMFP_195_16

Monfort JB, Cury K, Moguelet P, Chasset F, Bachmeyer C, Francès C, et al. Cutaneous arteriolosclerosis is not specific to ischemic hypertensive leg ulcers. Dermatology 2018; 234: 194-197.

https://doi.org/10.1159/000492669 DOI: https://doi.org/10.1159/000492669

Matsui M, Bouchareb R, Storto M, Hussain Y, Gregg A, Marx SO, et al. Increased Ca2+ influx through CaV1.2 drives aortic valve calcification. JCI Insight 2022; 7:e155569.

https://doi.org/10.1172/jci.insight.155569 DOI: https://doi.org/10.1172/jci.insight.155569

Guauque-Olarte S, Messika-Zeitoun D, Droit A, Lamontagne M, Tremblay-Marchand J, Lavoie-Charland E, et al. Calcium signaling pathway genes RUNX2 and CACNA1C are associated with calcific aortic valve disease. Circ Cardiovasc Genet 2015; 8: 812-822.

https://doi.org/10.1161/CIRCGENETICS.115.001145 DOI: https://doi.org/10.1161/CIRCGENETICS.115.001145

Enoch S, Kupitz S, Miller DR, Harding KG. Dystrophic calcification as a cause for non healing leg ulcers. Int Wound J 2005; 2: 142-147.

https://doi.org/10.1111/j.1742-4801.2005.00096.x DOI: https://doi.org/10.1111/j.1742-4801.2005.00096.x

Published

2024-05-30

How to Cite

Hess, J., Barysch-Bonderer, M.-J., Seeli, C., Laube, J., Ghosh, A., Deinsberger, J., Weber, B., Hafner, J., & Meier-Schiesser, B. (2024). Identifying Key Drivers in the Pathogenesis of Martorell Hypertensive Ischaemic Leg Ulcer: A Comparative Analysis with Chronic Venous Leg Ulcer. Acta Dermato-Venereologica, 104, adv40090. https://doi.org/10.2340/actadv.v104.40090