How Does a Convolutional Neural Network Trained to Differentiate between Invasive Melanoma and Melanoma In situ Generalize when Assessing Dysplastic Naevi?
DOI:
https://doi.org/10.2340/actadv.v103.4822Keywords:
Dermoscopy, Diagnosis, Machine Learning, Melanoma, Neural Networks, Computer, Sensitivity and SpecificityAbstract
Abstract is missing (Short communication)
Downloads
References
Polesie S, Jergeus E, Gillstedt M, Ceder H, Dahlen Gyllencreutz J, Fougelberg J, et al. Can dermoscopy be used to predict if a melanoma is in situ or invasive? Dermatol Pract Concept 2021; 11: e2021079.
https://doi.org/10.5826/dpc.1103a79 DOI: https://doi.org/10.5826/dpc.1103a79
Polesie S, Sundback L, Gillstedt M, Ceder H, Dahlen Gyllencreutz J, Fougelberg J, et al. Interobserver agreement on dermoscopic features and their associations with in situ and invasive cutaneous melanomas. Acta Derm Venereol 2021; 101: adv00570.
https://doi.org/10.2340/actadv.v101.281 DOI: https://doi.org/10.2340/actadv.v101.281
Polesie S, Gillstedt M, Kittler H, Rinner C, Tschandl P, Paoli J. Assessment of melanoma thickness based on dermoscopy images: an open, web-based, international, diagnostic study. J Eur Acad Dermatol Venereol 2022; 36: 2002-2007.
https://doi.org/10.1111/jdv.18436 DOI: https://doi.org/10.1111/jdv.18436
Gillstedt M, Hedlund E, Paoli J, Polesie S. Discrimination between invasive and in situ melanomas using a convolutional neural network. J Am Acad Dermatol 2022; 86: 647-649.
https://doi.org/10.1016/j.jaad.2021.02.012 DOI: https://doi.org/10.1016/j.jaad.2021.02.012
Polesie S, Gillstedt M, Ahlgren G, Ceder H, Dahlen Gyllencreutz J, Fougelberg J, et al. Discrimination between invasive and in situ melanomas using clinical close-up images and a de novo convolutional eural network. Front Med (Lausanne) 2021; 8: 723914.
https://doi.org/10.3389/fmed.2021.723914 DOI: https://doi.org/10.3389/fmed.2021.723914
Verzi AE, Quan VL, Walton KE, Martini MC, Marghoob AA, Garfield EM, et al. The diagnostic value and histologic correlate of distinct patterns of shiny white streaks for the diagnosis of melanoma: a retrospective, case-control study. J Am Acad Dermatol 2018; 78: 913-919.
https://doi.org/10.1016/j.jaad.2017.11.021 DOI: https://doi.org/10.1016/j.jaad.2017.11.021
Hofmann-Wellenhof R, Blum A, Wolf IH, Piccolo D, Kerl H, Garbe C, et al. Dermoscopic classification of atypical melanocytic nevi (Clark nevi). Arch Dermatol 2001; 137: 1575-1580.
https://doi.org/10.1001/archderm.137.12.1575 DOI: https://doi.org/10.1001/archderm.137.12.1575
Elder DE, Massi D, Scolyer RA, Willemze R. WHO classification of skin tumours: WHO classification of tumours, volume 11. Geneva: World Health Organization; 2018.
Additional Files
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Martin Gillstedt, Klara Segerholm, Ludwig Mannius, John Paoli, Sam Polesie
This work is licensed under a Creative Commons Attribution 4.0 International License.
All digitalized ActaDV contents is available freely online. The Society for Publication of Acta Dermato-Venereologica owns the copyright for all material published until volume 88 (2008) and as from volume 89 (2009) the journal has been published fully Open Access, meaning the authors retain copyright to their work.
Unless otherwise specified, all Open Access articles are published under CC-BY-NC licences, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for non-commercial purposes, provided proper attribution to the original work.