Investigation of Genetic Mutations in High-risk and Low-risk Basal Cell Carcinoma in a Non-Caucasian Population by Whole Exome Sequencing

Authors

  • Hyun Jee Kim
  • Minho Lee
  • Young Bok Lee Department of Dermatology, College of Medicine, The Catholic University of Korea, 07345 Uijeongbu, Korea
  • Dong Soo Yu

DOI:

https://doi.org/10.2340/00015555-3820

Keywords:

basal cell carcinoma, whole exome sequencing, skin cancer, genetics, histopathology, mutation

Abstract

This study analysed genomic mutations in basal cell carcinoma using whole exome sequencing of DNA specimens obtained from 20 Korean patients. Histological evaluation determined that 15 (75%) were low-risk basal cell carcinomas, and 5 (25%) were high-risk basal cell carcinomas. Seventy-five percent of the basal cell carcinomas harboured somatic mutations in hedge­hog pathway genes (PTCH1, 40% and SMO, 50%) and 45% harboured mutations in TP53. LRP1B was the most frequently mutated gene in high-risk basal cell carcinomas, SMO was the most frequently mutated gene in low-risk basal cell carcinomas. Specifically, LRP1B, ROS1, PTCH1, KMT2C, NSD1 and ARID1A mutations were more frequent in high-risk basal cell carcinomas than in low-risk basal cell carcinomas. However, copy number gains of the ROS1 gene were observed only in low-risk basal cell carcinomas. Other basal cell carcinoma related genes found in this study include: KDR, KMT2D, FAT1, FAT4, GRIN2A, ERBB4, NOTCH2, PDE4DIP, TET1, ZFHX3 and PREX2. These results provide insight into basal cell carcinoma in non-Caucasians.

Downloads

Download data is not yet available.

References

de Vries E, Louwman M, Bastiaens M, de Gruijl F, Coebergh JW. Rapid and continuous increases in incidence rates of basal cell carcinoma in the southeast Netherlands since 1973. J Invest Dermatol 2004; 123: 634-638.

DOI: https://doi.org/10.1111/j.0022-202X.2004.23306.x

Verkouteren JAC, Ramdas KHR, Wakkee M, Nijsten T. Epidemiology of basal cell carcinoma: scholarly review. Br J Dermatol 2017; 177: 359-372.

DOI: https://doi.org/10.1111/bjd.15321

Wong CS, Strange RC, Lear JT. Basal cell carcinoma. BMJ 2003; 327: 794-798.

DOI: https://doi.org/10.1136/bmj.327.7418.794

Oh CM, Cho H, Won YJ, Kong HJ, Roh YH, Jeong KH, et al. Nationwide trends in the incidence of melanoma and non-melanoma skin cancers from 1999 to 2014 in South Korea. Cancer Res Treat 2018; 50: 729-737.

DOI: https://doi.org/10.4143/crt.2017.166

Gloster HM, Jr, Neal K. Skin cancer in skin of color. J Am Acad Dermatol 2006; 55: 741-760; quiz 761-744.

DOI: https://doi.org/10.1016/j.jaad.2005.08.063

Ionescu DN, Arida M, Jukic DM. Metastatic basal cell carcinoma: four case reports, review of literature, and immunohistochemical evaluation. Arch Pathol Lab Med 2006; 130: 45-51.

DOI: https://doi.org/10.5858/2006-130-45-MBCCFC

Rubin AI, Chen EH, Ratner D. Basal-cell carcinoma. N Engl J Med 2005; 353: 2262-2269.

DOI: https://doi.org/10.1056/NEJMra044151

Lear JT, Hoban P, Strange RC, Fryer AA. Basal cell carcinoma: from host response and polymorphic variants to tumour suppressor genes. Clin Exp Dermatol 2005; 30: 49-55.

DOI: https://doi.org/10.1111/j.1365-2230.2004.01669.x

Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of basal cell carcinomas by whole-exome sequencing. J Invest Dermatol 2014; 134: 213-220.

DOI: https://doi.org/10.1038/jid.2013.276

Lam CW, Xie J, To KF, Ng HK, Lee KC, Yuen NW, et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 1999; 18: 833-836.

DOI: https://doi.org/10.1038/sj.onc.1202360

Boonchai W, Green A, Ng J, Dicker A, Chenevix-Trench G. Basal cell carcinoma in chronic arsenicism occurring in Queensland, Australia, after ingestion of an asthma medication. J Am Acad Dermatol 2000; 43: 664-669.

DOI: https://doi.org/10.1067/mjd.2000.107939

Peris K, Fargnoli MC, Garbe C, Kaufmann R, Bastholt L, Seguin NB, et al. Diagnosis and treatment of basal cell carcinoma: European consensus-based interdisciplinary guidelines. Eur J Cancer 2019; 118: 10-34.

DOI: https://doi.org/10.1016/j.ejca.2019.06.003

Dika E, Scarfi F, Ferracin M, Broseghini E, Marcelli E, Bortolani B, et al. Basal cell carcinoma: a comprehensive review. Int J Mol Sci 2020; 21: 5572.

DOI: https://doi.org/10.3390/ijms21155572

Ciazynska M, Narbutt J, Wozniacka A, Lesiak A. Trends in basal cell carcinoma incidence rates: a 16-year retrospective study of a population in central Poland. Postepy Dermatol Alergol 2018; 35: 47-52.

DOI: https://doi.org/10.5114/ada.2018.73164

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754-1760.

DOI: https://doi.org/10.1093/bioinformatics/btp324

Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28: 2678-2679.

DOI: https://doi.org/10.1093/bioinformatics/bts503

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297-1303.

DOI: https://doi.org/10.1101/gr.107524.110

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213-219.

DOI: https://doi.org/10.1038/nbt.2514

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

DOI: https://doi.org/10.1093/nar/gkq603

Magi A, Tattini L, Cifola I, D'Aurizio R, Benelli M, Mangano E, et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol 2013; 14: R120.

DOI: https://doi.org/10.1186/gb-2013-14-10-r120

Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 2016; 17: 31.

DOI: https://doi.org/10.1186/s13059-016-0893-4

India Project Team of the International Cancer Genome C. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun 2013; 4: 2873.

DOI: https://doi.org/10.1038/ncomms3873

Caliri AW, Tommasi S, Bates SE, Besaratinia A. Spontaneous and photosensitization-induced mutations in primary mouse cells transitioning through senescence and immortalization. J Biol Chem 2020; 295: 9974-9985.

DOI: https://doi.org/10.1074/jbc.RA120.014465

Morelle A, Cericatto R, Krepischi AC, Ruiz IR. Clinical and genetic characterization of basal cell carcinoma and breast cancer in a single patient. Springerplus 2014; 3: 454.

DOI: https://doi.org/10.1186/2193-1801-3-454

Reichrath J. Molecular mechanisms of basal cell and squamous cell carcinomas. Georgetown, Tex. New York, NY: Landes Bioscience/Eurekah.com; Springer Science+Business Media; 2006.

Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet 2016; 48: 398-406.

DOI: https://doi.org/10.1038/ng.3525

Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152: 43-51.

DOI: https://doi.org/10.1111/j.1365-2133.2005.06353.x

Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, et al. Arid1a Has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell 2017; 32: 574-589.e6.

DOI: https://doi.org/10.1016/j.ccell.2017.10.007

Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, Gutierrez Garcia-Rodrigo C, Fargnoli MC. Understanding the molecular genetics of basal cell carcinoma. Int J Mol Sci 2017; 18: 2485.

DOI: https://doi.org/10.3390/ijms18112485

Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442-446.

DOI: https://doi.org/10.1038/ng.810

Ryan MB, Finn AJ, Pedone KH, Thomas NE, Der CJ, Cox AD. ERK/MAPK signaling drives overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-mutant melanoma. Mol Cancer Res 2016; 14: 1009-1018.

DOI: https://doi.org/10.1158/1541-7786.MCR-16-0184

Dillon LM, Miller TW. The PREX1/Rac signaling axis: Potential as a biomarker and therapeutic target in breast cancer. Mol Cell Oncol 2015; 2: e996016.

DOI: https://doi.org/10.1080/23723556.2014.996016

Lissanu Deribe Y. Interplay between PREX2 mutations and the PI3K pathway and its effect on epigenetic regulation of gene expression in NRAS-mutant melanoma. Small GTPases 2016; 7: 178-185.

DOI: https://doi.org/10.1080/21541248.2016.1178366

Jiang Y, Zhu C, He D, Gao Q, Tian X, Ma X, et al. Cytological immunostaining of HMGA2, LRP1B, and TP63 as potential biomarkers for triaging human papillomavirus-positive women. Transl Oncol 2019; 12: 959-967.

DOI: https://doi.org/10.1016/j.tranon.2019.04.012

Sonoda I, Imoto I, Inoue J, Shibata T, Shimada Y, Chin K, et al. Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma. Cancer Res 2004; 64: 3741-3747.

DOI: https://doi.org/10.1158/0008-5472.CAN-04-0172

Nakagawa T, Pimkhaokham A, Suzuki E, Omura K, Inazawa J, Imoto I. Genetic or epigenetic silencing of low density lipoprotein receptor-related protein 1B expression in oral squamous cell carcinoma. Cancer Sci 2006; 97: 1070-1074.

DOI: https://doi.org/10.1111/j.1349-7006.2006.00283.x

Beer AG, Zenzmaier C, Schreinlechner M, Haas J, Dietrich MF, Herz J, et al. Expression of a recombinant full-length LRP1B receptor in human non-small cell lung cancer cells confirms the postulated growth-suppressing function of this large LDL receptor family member. Oncotarget 2016; 7: 68721-68733.

DOI: https://doi.org/10.18632/oncotarget.11897

Wang Z, Sun P, Gao C, Chen J, Li J, Chen Z, et al. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells. Exp Cell Res 2017; 357: 1-8.

DOI: https://doi.org/10.1016/j.yexcr.2017.04.010

Ruiz-Perez MV, Henley AB, Arsenian-Henriksson M. The MYCN protein in health and disease. Genes (Basel) 2017; 8: 113.

DOI: https://doi.org/10.3390/genes8040113

Published

2021-05-19

How to Cite

Kim, H. J., Lee, M., Lee, Y. B., & Yu, D. S. (2021). Investigation of Genetic Mutations in High-risk and Low-risk Basal Cell Carcinoma in a Non-Caucasian Population by Whole Exome Sequencing. Acta Dermato-Venereologica, 101(5), adv00458. https://doi.org/10.2340/00015555-3820