Darier Disease – A Multi-organ Condition?

Authors

  • Etty Bachar-Wikström
  • Jakob D. Wikström Department of Medicine Solna, Karolinska Institutet, SE-171 64 Stockholm, Sweden

DOI:

https://doi.org/10.2340/00015555-3770

Keywords:

Darier disease, genodermatosis, rare disease, endoplasmic reticulum, calcium, SERCA2

Abstract

Darier disease is a severe, rare autosomal dominant inherited skin condition caused by mutations in the ATP2A2 gene encoding sarcoendoplasmic reticulum Ca2+-ATPase isoform 2 in the endoplasmic reticulum. Since sarcoendoplasmic reticulum Ca2+-ATPase isoform 2 is expressed in most tissues, and intracellular calcium homeostasis is of fundamental importance, it is conceivable that other organs besides the skin may be involved in Darier disease. This review focusses on the association of Darier disease with other organ dysfunctions and diseases, emphasizing their common molecular pathology. In conclusion, Darier disease should be considered a systemic condition that requires systemic and disease mechanism targeted treatments.

Downloads

Download data is not yet available.

References

Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 1999; 21: 271-277.

DOI: https://doi.org/10.1038/6784

Burge SM, Wilkinson JD. Darier-White disease: a review of the clinical features in 163 patients. J Am Acad Dermatol 1992; 27: 40-50.

DOI: https://doi.org/10.1016/0190-9622(92)70154-8

Tavadia S, Mortimer E, Munro CS. Genetic epidemiology of Darier's disease: a population study in the west of Scotland. Br J Dermatol 2002; 146: 107-109.

DOI: https://doi.org/10.1046/j.1365-2133.2002.04559.x

Svendsen IB, Albrectsen B. The prevalence of dyskeratosis follicularis (Darier's disease) in Denmark: an investigation of the heredity in 22 families. Acta Derm Venereol 1959; 39: 256-629.

Ahanian T, Curman P, Leong IUS, Brismar K, Bachar-Wikstrom E, Cederlof M, et al. Metabolic phenotype in Darier disease: a cross-sectional clinical study. Diabetol Metab Syndr 2020; 12: 12.

DOI: https://doi.org/10.1186/s13098-020-0520-0

Bachar-Wikstrom E, Curman P, Ahanian T, Leong IUS, Larsson H, Cederlof M, et al. Darier disease is associated with heart failure: a cross-sectional case-control and population based study. Sci Rep 2020; 10: 6886.

DOI: https://doi.org/10.1038/s41598-020-63832-9

Parfitt E, Burge S, Craddock N, Roberts E, McLean WH, Weissenbach J, et al. The gene for Darier's disease maps between D12S78 and D12S79. Hum Mol Genet 1994; 3: 35-38.

DOI: https://doi.org/10.1093/hmg/3.1.35

Prasad V, Lorenz JN, Lasko VM, Nieman ML, Huang W, Wang Y, et al. SERCA2 haploinsufficiency in a mouse model of Darier disease causes a selective predisposition to heart failure. Biomed Res Int 2015; 2015: 251598.

DOI: https://doi.org/10.1155/2015/251598

Nellen RG, Steijlen PM, van Steensel MA, Vreeburg M, European Professional Contributors; Frank J, et al. Mendelian disorders of cornification caused by defects in intracellular calcium pumps: mutation update and database for variants in ATP2A2 and ATP2C1 associated with Darier Disease and Hailey-Hailey disease. Hum Mutat 2017; 38: 343-356.

DOI: https://doi.org/10.1002/humu.23164

Elizondo LI, Jafar-Nejad P, Clewing JM, Boerkoel CF. Gene clusters, molecular evolution and disease: a speculation. Curr Genomics 2009; 10: 64-75.

DOI: https://doi.org/10.2174/138920209787581271

Sakuntabhai A, Dhitavat J, Burge S, Hovnanian A. Mosaicism for ATP2A2 mutations causes segmental Darier's disease. J Invest Dermatol 2000; 115: 1144-1147.

DOI: https://doi.org/10.1046/j.1523-1747.2000.00182.x

Yasuno S, Miyoshi Y, Asano N, Okita T, Yamaguchi M, Shimomura N, et al. Sporadic case of Darier disease caused by a novel splice-site mutation in the ATP2A2 gene. Clin Exp Dermatol 2019; 44: e10-e12.

DOI: https://doi.org/10.1111/ced.13806

Leong IUS, Stuckey A, Ahanian T, Cederlof M, Wikstrom JD. Novel mutations in Darier disease and association to self-reported disease severity. PLoS One 2017; 12: e0186356.

DOI: https://doi.org/10.1371/journal.pone.0186356

Noda K, Takeichi T, Okuno Y, Takama H, Miura S, Kagami S, et al. Novel and recurrent ATP2A2 mutations in Japanese patients with Darier's disease. Nagoya J Med Sci 2016; 78: 485-492.

Ringpfeil F, Raus A, DiGiovanna JJ, Korge B, Harth W, Mazzanti C, et al. Darier disease - novel mutations in ATP2A2 and genotype-phenotype correlation. Exp Dermatol 2001; 10: 19-27.

DOI: https://doi.org/10.1034/j.1600-0625.2001.100103.x

Onozuka T, Sawamura D, Goto M, Yokota K, Shimizu H. Possible role of endoplasmic reticulum stress in the pathogenesis of Darier's disease. J Dermatol Sci 2006; 41: 217-220.

DOI: https://doi.org/10.1016/j.jdermsci.2005.12.002

Hulatt L, Burge S. Darier's disease: hopes and challenges. J R Soc Med 2003; 96: 439-441.

DOI: https://doi.org/10.1177/014107680309600906

Hovnanian A. Darier's disease: from dyskeratosis to endoplasmic reticulum calcium ATPase deficiency. Biochem Biophys Res Commun 2004; 322: 1237-1244.

DOI: https://doi.org/10.1016/j.bbrc.2004.08.067

Sehgal VN, Srivastava G. Darier's (Darier-White) disease/keratosis follicularis. Int J Dermatol 2005; 44: 184-192.

DOI: https://doi.org/10.1111/j.1365-4632.2004.02408.x

Cooper SM, Burge SM. Darier's disease: epidemiology, pathophysiology, and management. Am J Clin Dermatol 2003; 4: 97-105.

DOI: https://doi.org/10.2165/00128071-200304020-00003

Bernabe DG, Kawata LT, Beneti IM, Crivelini MM, Biasoli ER. Multiple white papules in the palate: oral manifestation of Darier's disease. Clin Exp Dermatol 2009; 34: e270-e271.

DOI: https://doi.org/10.1111/j.1365-2230.2008.03187.x

Macleod RI, Munro CS. The incidence and distribution of oral lesions in patients with Darier's disease. Br Dent J 1991; 171: 133-136.

DOI: https://doi.org/10.1038/sj.bdj.4807636

Dodiuk-Gad R, Cohen-Barak E, Ziv M, Shani-Adir A, Amichai B, Zlotogorski A, et al. Health-related quality of life among Darier's disease patients. J Eur Acad Dermatol Venereol 2013; 27: 51-56.

DOI: https://doi.org/10.1111/j.1468-3083.2011.04355.x

See SHC, Peternel S, Adams D, North JP. Distinguishing histopathologic features of acantholytic dermatoses and the pattern of acantholytic hypergranulosis. J Cutan Pathol 2019; 46: 6-15.

DOI: https://doi.org/10.1111/cup.13356

Kositkuljorn C, Suchonwanit P. Darier's Disease: report of a case with facial involvement. Case Rep Dermatol 2019; 11: 327-333.

DOI: https://doi.org/10.1159/000504925

Gupta LK, Garg A, Khare AK, Mittal A. A case of zosteriform Darier's disease with seasonal recurrence. Indian Dermatol Online J 2013; 4: 219-221.

DOI: https://doi.org/10.4103/2229-5178.115523

Suryawanshi H, Dhobley A, Sharma A, Kumar P. Darier disease: a rare genodermatosis. J Oral Maxillofac Pathol 2017; 21: 321.

DOI: https://doi.org/10.4103/jomfp.JOMFP_170_16

Hakuno M, Shimizu H, Akiyama M, Amagai M, Wahl JK, Wheelock MJ, et al. Dissociation of intra- and extracellular domains of desmosomal cadherins and E-cadherin in Hailey-Hailey disease and Darier's disease. Br J Dermatol 2000; 142: 702-711.

DOI: https://doi.org/10.1046/j.1365-2133.2000.03415.x

Getsios S, Huen AC, Green KJ. Working out the strength and flexibility of desmosomes. Nat Rev Mol Cell Biol 2004; 5: 271-81.

DOI: https://doi.org/10.1038/nrm1356

Garrod D, Chidgey M. Desmosome structure, composition and function. Biochim Biophys Acta 2008; 1778: 572-587.

DOI: https://doi.org/10.1016/j.bbamem.2007.07.014

Duden R, Franke WW. Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J Cell Biol 1988; 107: 1049-1063.

DOI: https://doi.org/10.1083/jcb.107.3.1049

Pillai S, Bikle DD, Hincenbergs M, Elias PM. Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium. J Cell Physiol 1988; 134: 229-237.

DOI: https://doi.org/10.1002/jcp.1041340208

Savignac M, Simon M, Edir A, Guibbal L, Hovnanian A. SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat. J Invest Dermatol 2014; 134: 1961-1970.

DOI: https://doi.org/10.1038/jid.2014.8

Dhitavat J, Cobbold C, Leslie N, Burge S, Hovnanian A. Impaired trafficking of the desmoplakins in cultured Darier's disease keratinocytes. J Invest Dermatol 2003; 121: 1349-1355.

DOI: https://doi.org/10.1046/j.1523-1747.2003.12557.x

Celli A, Crumrine D, Meyer JM, Mauro TM. Endoplasmic reticulum calcium regulates epidermal barrier response and desmosomal structure. J Invest Dermatol 2016; 136: 1840-1847.

DOI: https://doi.org/10.1016/j.jid.2016.05.100

Kang S, Dahl R, Hsieh W, Shin A, Zsebo KM, Buettner C, et al. Small molecular allosteric activator of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J Biol Chem 2016; 291: 5185-5198.

DOI: https://doi.org/10.1074/jbc.M115.705012

Li N, Park M, Xiao S, Liu Z, Diaz LA. ER-to-Golgi blockade of nascent desmosomal cadherins in SERCA2-inhibited keratinocytes: Implications for Darier's disease. Traffic 2017; 18: 232-241.

DOI: https://doi.org/10.1111/tra.12470

Stuart RO, Sun A, Bush KT, Nigam SK. Dependence of epithelial intercellular junction biogenesis on thapsigargin-sensitive intracellular calcium stores. J Biol Chem 1996; 271: 13636-13641.

DOI: https://doi.org/10.1074/jbc.271.23.13636

Bikle DD, Xie Z, Tu CL. Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 2012; 7: 461-472.

DOI: https://doi.org/10.1586/eem.12.34

Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 1985; 84: 508-512.

DOI: https://doi.org/10.1111/1523-1747.ep12273485

Forslind B. Quantitative X-ray microanalysis of skin. Particle probe evaluation of the skin barrier function. Acta Derm Venereol 1987; Suppl 134: 1-8.

Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR. Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 1992; 89: 530-538.

DOI: https://doi.org/10.1172/JCI115617

Menon GK, Elias PM, Lee SH, Feingold KR. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res 1992; 270: 503-512.

DOI: https://doi.org/10.1007/BF00645052

Godic A. Darier disease: a guide to the physician. J Med 2004; 35: 5-17.

Leinonen PT, Hagg PM, Peltonen S, Jouhilahti EM, Melkko J, Korkiamaki T, et al. Reevaluation of the normal epidermal calcium gradient, and analysis of calcium levels and ATP receptors in Hailey-Hailey and Darier epidermis. J Invest Dermatol 2009; 129: 1379-1387.

DOI: https://doi.org/10.1038/jid.2008.381

Dode L, Andersen JP, Leslie N, Dhitavat J, Vilsen B, Hovnanian A. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady-state and transient kinetic analyses. J Biol Chem 2003; 278: 47877-47889.

DOI: https://doi.org/10.1074/jbc.M306784200

Ikeda S, Mayuzumi N, Shigihara T, Epstein EH, Jr, Goldsmith LA, Ogawa H. Mutations in ATP2A2 in patients with Darier's disease. J Invest Dermatol 2003; 121: 475-477.

DOI: https://doi.org/10.1046/j.1523-1747.2003.12400.x

Sakuntabhai A, Burge S, Monk S, Hovnanian A. Spectrum of novel ATP2A2 mutations in patients with Darier's disease. Hum Mol Genet 1999; 8: 1611-1619.

DOI: https://doi.org/10.1093/hmg/8.9.1611

Ahn W, Lee MG, Kim KH, Muallem S. Multiple effects of SERCA2b mutations associated with Darier's disease. J Biol Chem 2003; 278: 20795-20801.

DOI: https://doi.org/10.1074/jbc.M301638200

Miyauchi Y, Daiho T, Yamasaki K, Takahashi H, Ishida-Yamamoto A, Danko S, et al. Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. J Biol Chem 2006; 281: 22882-22895.

DOI: https://doi.org/10.1074/jbc.M601966200

Wang Y, Bruce AT, Tu C, Ma K, Zeng L, Zheng P, et al. Protein aggregation of SERCA2 mutants associated with Darier disease elicits ER stress and apoptosis in keratinocytes. J Cell Sci 2011; 124: 3568-3580.

DOI: https://doi.org/10.1242/jcs.084053

Zhang Y, Inoue M, Tsutsumi A, Watanabe S, Nishizawa T, Nagata K, et al. Cryo-EM structures of SERCA2b reveal the mechanism of regulation by the luminal extension tail. Sci Adv 2020; 6: eabb0147.

DOI: https://doi.org/10.1126/sciadv.abb0147

Lee AG. Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions. Biochim Biophys Acta 2002; 1565: 246-266.

DOI: https://doi.org/10.1016/S0005-2736(02)00573-4

Zhao XS, Shin DM, Liu LH, Shull GE, Muallem S. Plasticity and adaptation of Ca2+ signaling and Ca2+-dependent exocytosis in SERCA2(+/-) mice. EMBO J 2001; 20: 2680-2689.

DOI: https://doi.org/10.1093/emboj/20.11.2680

Vandecaetsbeek I, Trekels M, De Maeyer M, Ceulemans H, Lescrinier E, Raeymaekers L, et al. Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci U S A 2009; 106: 18533-18538.

DOI: https://doi.org/10.1073/pnas.0906797106

Hovnanian A. SERCA pumps and human diseases. Subcell Biochem 2007; 45: 337-363.

DOI: https://doi.org/10.1007/978-1-4020-6191-2_12

Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy 2015; 11: 1956-1977.

DOI: https://doi.org/10.1080/15548627.2015.1091141

Mauro T. Endoplasmic reticulum calcium, stress, and cell-to-cell adhesion. J Invest Dermatol 2014; 134: 1800-1801.

DOI: https://doi.org/10.1038/jid.2014.97

Venier RE, Igdoura SA. Miglustat as a therapeutic agent: prospects and caveats. J Med Genet 2012; 49: 591-597.

DOI: https://doi.org/10.1136/jmedgenet-2012-101070

Celli A, Mackenzie DS, Zhai Y, Tu CL, Bikle DD, Holleran WM, et al. SERCA2-controlled Ca(2)+-dependent keratinocyte adhesion and differentiation is mediated via the sphingolipid pathway: a therapeutic target for Darier's disease. J Invest Dermatol 2012; 132: 1188-1195.

DOI: https://doi.org/10.1038/jid.2011.447

Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005; 26: 19-39.

Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14: 88-98.

DOI: https://doi.org/10.1038/nrendo.2017.151

Eckstein ML, Williams DM, O'Neil LK, Hayes J, Stephens JW, Bracken RM. Physical exercise and non-insulin glucose-lowering therapies in the management of type 2 diabetes mellitus: a clinical review. Diabet Med 2019; 36: 349-358.

DOI: https://doi.org/10.1111/dme.13865

Tarasov A, Dusonchet J, Ashcroft F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 2004; 53: S113-S122.

DOI: https://doi.org/10.2337/diabetes.53.suppl_3.S113

Detimary P, Van den Berghe G, Henquin JC. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J Biol Chem 1996; 271: 20559-20565.

DOI: https://doi.org/10.1074/jbc.271.34.20559

Lang J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem 1999; 259: 3-17.

DOI: https://doi.org/10.1046/j.1432-1327.1999.00043.x

Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003; 46: 1029-1045.

DOI: https://doi.org/10.1007/s00125-003-1153-1

Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000; 49: 1751-1760.

DOI: https://doi.org/10.2337/diabetes.49.11.1751

Henquin JC. Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues. Diabetes 2004; 53: S48-S58.

DOI: https://doi.org/10.2337/diabetes.53.suppl_3.S48

Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 2002; 82: 893-922.

DOI: https://doi.org/10.1152/physrev.00013.2002

Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2015; 57: 217-227.

DOI: https://doi.org/10.1016/j.jbior.2014.10.001

Varadi A, Molnar E, Ostenson CG, Ashcroft SJ. Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J 1996; 319: 521-527.

DOI: https://doi.org/10.1042/bj3190521

Roe MW, Philipson LH, Frangakis CJ, Kuznetsov A, Mertz RJ, Lancaster ME, et al. Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem 1994; 269: 18279-18282.

DOI: https://doi.org/10.1016/S0021-9258(17)32299-8

Islam MS. The ryanodine receptor calcium channel of beta-cells: molecular regulation and physiological significance. Diabetes 2002; 51: 1299-1309.

DOI: https://doi.org/10.2337/diabetes.51.5.1299

Lipson KL, Ghosh R, Urano F. The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PLoS One 2008; 3: e1648.

DOI: https://doi.org/10.1371/journal.pone.0001648

Leibowitz G, Bachar E, Shaked M, Sinai A, Ketzinel-Gilad M, Cerasi E, et al. Glucose regulation of beta-cell stress in type 2 diabetes. Diabetes Obes Metab 2010; 12: 66-75.

DOI: https://doi.org/10.1111/j.1463-1326.2010.01280.x

Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev 2008; 29: 317-333.

DOI: https://doi.org/10.1210/er.2007-0039

Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS One 2009; 4: e4954.

DOI: https://doi.org/10.1371/journal.pone.0004954

Fonseca SG, Ishigaki S, Oslowski CM, Lu S, Lipson KL, Ghosh R, et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 2010; 120: 744-755.

DOI: https://doi.org/10.1172/JCI39678

Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol 2012; 197: 857-867.

DOI: https://doi.org/10.1083/jcb.201110131

Bachar-Wikstrom E, Wikstrom JD, Ariav Y, Tirosh B, Kaiser N, Cerasi E, et al. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013; 62: 1227-1237.

DOI: https://doi.org/10.2337/db12-1474

Tersey SA, Nishiki Y, Templin AT, Cabrera SM, Stull ND, Colvin SC, et al. Islet beta-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 2012; 61: 818-827.

DOI: https://doi.org/10.2337/db11-1293

Marhfour I, Lopez XM, Lefkaditis D, Salmon I, Allagnat F, Richardson SJ, et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 2012; 55: 2417-2420.

DOI: https://doi.org/10.1007/s00125-012-2604-3

Engin F, Yermalovich A, Nguyen T, Hummasti S, Fu W, Eizirik DL, et al. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci Transl Med 2013; 5: 211ra156.

DOI: https://doi.org/10.1126/scitranslmed.3006534

Hetz C, Glimcher LH. Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 2009; 35: 551-561.

DOI: https://doi.org/10.1016/j.molcel.2009.08.021

Cederlof M, Curman P, Ahanian T, Leong IUS, Brismar K, Bachar-Wikstrom E, et al. Darier disease is associated with type 1 diabetes: findings from a population-based cohort study. J Am Acad Dermatol 2019; 81: 1425-1426.

DOI: https://doi.org/10.1016/j.jaad.2019.05.087

Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 1999; 103: 27-37.

DOI: https://doi.org/10.1172/JCI4431

Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A 2007; 104: 15040-15044.

DOI: https://doi.org/10.1073/pnas.0707291104

Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000; 25: 406-409.

DOI: https://doi.org/10.1038/78085

Eiberg H, Hansen L, Kjer B, Hansen T, Pedersen O, Bille M, et al. Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J Med Genet 2006; 43: 435-440.

DOI: https://doi.org/10.1136/jmg.2005.034892

Rendtorff ND, Lodahl M, Boulahbel H, Johansen IR, Pandya A, Welch KO, et al. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment. Am J Med Genet A 2011; 155A: 1298-1313.

DOI: https://doi.org/10.1002/ajmg.a.33970

Pallotta MT, Tascini G, Crispoldi R, Orabona C, Mondanelli G, Grohmann U, et al. Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. J Transl Med 2019; 17: 238.

DOI: https://doi.org/10.1186/s12967-019-1993-1

Rigoli L, Di Bella C. Wolfram syndrome 1 and Wolfram syndrome 2. Curr Opin Pediatr 2012; 24: 512-517.

DOI: https://doi.org/10.1097/MOP.0b013e328354ccdf

Tong X, Kono T, Anderson-Baucum EK, Yamamoto W, Gilon P, Lebeche D, et al. SERCA2 deficiency impairs pancreatic beta-cell function in response to diet-induced obesity. Diabetes 2016; 65: 3039-3052.

DOI: https://doi.org/10.2337/db16-0084

Kono T, Ahn G, Moss DR, Gann L, Zarain-Herzberg A, Nishiki Y, et al. PPAR-gamma activation restores pancreatic islet SERCA2 levels and prevents beta-cell dysfunction under conditions of hyperglycemic and cytokine stress. Mol Endocrinol 2012; 26: 257-271.

DOI: https://doi.org/10.1210/me.2011-1181

Yang Y, Chan L. Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev 2016; 37: 190-222.

DOI: https://doi.org/10.1210/er.2015-1116

Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998; 4: 713-717.

DOI: https://doi.org/10.1038/nm0698-713

Corthay A, Backlund J, Broddefalk J, Michaelsson E, Goldschmidt TJ, Kihlberg J, et al. Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen-induced arthritis. Eur J Immunol 1998; 28: 2580-2590.

DOI: https://doi.org/10.1002/(SICI)1521-4141(199808)28:08<2580::AID-IMMU2580>3.0.CO;2-X

Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 1986; 324: 258-260.

DOI: https://doi.org/10.1038/324258a0

Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 1998; 101: 273-281.

DOI: https://doi.org/10.1172/JCI1316

Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ, et al. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem 1999; 274: 22321-22327.

DOI: https://doi.org/10.1074/jbc.274.32.22321

Marre ML, Piganelli JD. Environmental factors contribute to beta cell endoplasmic reticulum stress and neo-antigen formation in type 1 diabetes. Front Endocrinol (Lausanne) 2017; 8: 262.

DOI: https://doi.org/10.3389/fendo.2017.00262

van Kuppeveld FJ, Hoenderop JG, Smeets RL, Willems PH, Dijkman HB, Galama JM, et al. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 1997; 16: 3519-3532.

DOI: https://doi.org/10.1093/emboj/16.12.3519

de la Bastie D, Levitsky D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, et al. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 1990; 66: 554-564.

DOI: https://doi.org/10.1161/01.RES.66.2.554

MacLennan DH, Brandl CJ, Korczak B, Green NM. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 1985; 316: 696-700.

DOI: https://doi.org/10.1038/316696a0

Gorski PA, Ceholski DK, Hajjar RJ. Altered myocardial calcium cycling and energetics in heart failure - a rational approach for disease treatment. Cell Metab 2015; 21: 183-194.

DOI: https://doi.org/10.1016/j.cmet.2015.01.005

MacLennan DH. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem 1970; 245: 4508-4518.

DOI: https://doi.org/10.1016/S0021-9258(19)63820-2

Katz AM. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 1990; 322: 100-110.

DOI: https://doi.org/10.1056/NEJM199001113220206

Braunwald E. Shattuck lecture - cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med 1997; 337: 1360-1369.

DOI: https://doi.org/10.1056/NEJM199711063371906

Roger VL. Epidemiology of heart failure. Circ Res 2013; 113: 646-659.

DOI: https://doi.org/10.1161/CIRCRESAHA.113.300268

Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, et al. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 1998; 83: 1205-1214.

DOI: https://doi.org/10.1161/01.RES.83.12.1205

del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 2308-2311.

DOI: https://doi.org/10.1161/01.CIR.100.23.2308

Studeli R, Jung S, Mohacsi P, Perruchoud S, Castiglioni P, Wenaweser P, et al. Diastolic dysfunction in human cardiac allografts is related with reduced SERCA2a gene expression. Am J Transplant 2006; 6: 775-782.

DOI: https://doi.org/10.1111/j.1600-6143.2006.01241.x

Barkley GL, Moran JE, Takanashi Y, Tepley N. Techniques for DC magnetoencephalography. J Clin Neurophysiol 1991; 8: 189-199.

DOI: https://doi.org/10.1097/00004691-199104000-00006

Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51: 1112-1119.

DOI: https://doi.org/10.1016/j.jacc.2007.12.014

Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, et al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304-313.

DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.022889

Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 2016; 387: 1178-1186.

DOI: https://doi.org/10.1016/S0140-6736(16)00082-9

Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 2004; 110: 705-712.

DOI: https://doi.org/10.1161/01.CIR.0000137836.95625.D4

Mao W, Fukuoka S, Iwai C, Liu J, Sharma VK, Sheu SS, et al. Cardiomyocyte apoptosis in autoimmune cardiomyopathy: mediated via endoplasmic reticulum stress and exaggerated by norepinephrine. Am J Physiol Heart Circ Physiol 2007; 293: H1636-H1645.

DOI: https://doi.org/10.1152/ajpheart.01377.2006

Li SY, Gilbert SA, Li Q, Ren J. Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. J Mol Cell Cardiol 2009; 47: 247-255.

DOI: https://doi.org/10.1016/j.yjmcc.2009.03.017

Severino A, Campioni M, Straino S, Salloum FN, Schmidt N, Herbrand U, et al. Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol 2007; 50: 1029-1037.

DOI: https://doi.org/10.1016/j.jacc.2007.06.006

Force T, Kerkela R. Cardiotoxicity of the new cancer therapeutics - mechanisms of, and approaches to, the problem. Drug Discov Today 2008; 13: 778-784.

DOI: https://doi.org/10.1016/j.drudis.2008.05.011

Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 2007; 116: 1226-1233.

DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.682054

Ortega A, Rosello-Lleti E, Tarazon E, Molina-Navarro MM, Martinez-Dolz L, Gonzalez-Juanatey JR, et al. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy. PLoS One 2014; 9: e107635.

DOI: https://doi.org/10.1371/journal.pone.0107635

Dally S, Monceau V, Corvazier E, Bredoux R, Raies A, Bobe R, et al. Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart. Cell Calcium 2009; 45: 144-154.

DOI: https://doi.org/10.1016/j.ceca.2008.08.002

Duan Q, Ni L, Wang P, Chen C, Yang L, Ma B, et al. Deregulation of XBP1 expression contributes to myocardial vascular endothelial growth factor-A expression and angiogenesis during cardiac hypertrophy in vivo. Aging Cell 2016; 15: 625-633.

DOI: https://doi.org/10.1111/acel.12460

Duan Q, Yang L, Gong W, Chaugai S, Wang F, Chen C, et al. MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis. J Cell Physiol 2015; 230: 1964-1973.

DOI: https://doi.org/10.1002/jcp.24942

Lu Z, Xu X, Fassett J, Kwak D, Liu X, Hu X, et al. Loss of the eukaryotic initiation factor 2alpha kinase general control nonderepressible 2 protects mice from pressure overload-induced congestive heart failure without affecting ventricular hypertrophy. Hypertension 2014; 63: 128-135.

DOI: https://doi.org/10.1161/HYPERTENSIONAHA.113.02313

Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell 2012; 149: 1257-1268.

DOI: https://doi.org/10.1016/j.cell.2012.03.050

Ibler KS, Jemec GB. Cumulative life course impairment in other chronic or recurrent dermatologic diseases. Curr Probl Dermatol 2013; 44: 130-136.

DOI: https://doi.org/10.1159/000350056

Langley RG, Feldman SR, Han C, Schenkel B, Szapary P, Hsu MC, et al. Ustekinumab significantly improves symptoms of anxiety, depression, and skin-related quality of life in patients with moderate-to-severe psoriasis: results from a randomized, double-blind, placebo-controlled phase III trial. J Am Acad Dermatol 2010; 63: 457-465.

DOI: https://doi.org/10.1016/j.jaad.2009.09.014

Yazici K, Baz K, Yazici AE, Kokturk A, Tot S, Demirseren D, et al. Disease-specific quality of life is associated with anxiety and depression in patients with acne. J Eur Acad Dermatol Venereol 2004; 18: 435-439.

DOI: https://doi.org/10.1111/j.1468-3083.2004.00946.x

Gordon-Smith K, Green E, Grozeva D, Tavadia S, Craddock N, Jones L. Genotype-phenotype correlations in Darier disease: a focus on the neuropsychiatric phenotype. Am J Med Genet B Neuropsychiatr Genet 2018; 177: 717-726.

DOI: https://doi.org/10.1002/ajmg.b.32679

Earls LR, Bayazitov IT, Fricke RG, Berry RB, Illingworth E, Mittleman G, et al. Dysregulation of presynaptic calcium and synaptic plasticity in a mouse model of 22q11 deletion syndrome. J Neurosci 2010; 30: 15843-15855.

DOI: https://doi.org/10.1523/JNEUROSCI.1425-10.2010

Jacobsen NJ, Lyons I, Hoogendoorn B, Burge S, Kwok PY, O'Donovan MC, et al. ATP2A2 mutations in Darier's disease and their relationship to neuropsychiatric phenotypes. Hum Mol Genet 1999; 8: 1631-1636.

DOI: https://doi.org/10.1093/hmg/8.9.1631

Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends Neurosci 2008; 31: 454-463.

DOI: https://doi.org/10.1016/j.tins.2008.06.005

LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002; 3: 862-872.

DOI: https://doi.org/10.1038/nrn960

Dahl R. A new target for Parkinson's disease: Small molecule SERCA activator CDN1163 ameliorates dyskinesia in 6-OHDA-lesioned rats. Bioorg Med Chem 2017; 25: 53-57.

DOI: https://doi.org/10.1016/j.bmc.2016.10.008

Brini M, Carafoli E, Cali T. The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun 2017; 483: 1116-1124.

DOI: https://doi.org/10.1016/j.bbrc.2016.07.117

Baba-Aissa F, Raeymaekers L, Wuytack F, De Greef C, Missiaen L, Casteels R. Distribution of the organellar Ca2+ transport ATPase SERCA2 isoforms in the cat brain. Brain Res 1996; 743: 141-153.

DOI: https://doi.org/10.1016/S0006-8993(96)01037-2

Campbell AM, Wuytack F, Fambrough DM. Differential distribution of the alternative forms of the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase, SERCA2b and SERCA2a, in the avian brain. Brain Res 1993; 605: 67-76.

DOI: https://doi.org/10.1016/0006-8993(93)91357-X

Salvador JM, Berengena M, Sepulveda MR, Mata AM. Distribution of the intracellular Ca(2+)-ATPase isoform 2b in pig brain subcellular fractions and cross-reaction with a monoclonal antibody raised against the enzyme isoform. J Biochem 2001; 129: 621-626.

DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a002899

Craddock N, Owen M, Burge S, Kurian B, Thomas P, McGuffin P. Familial cosegregation of major affective disorder and Darier's disease (keratosis follicularis). Br J Psychiatry 1994; 164: 355-358.

DOI: https://doi.org/10.1192/bjp.164.3.355

Cheour M, Zribi H, Abdelhak S, Drira S, Ben Osman A. Les manifestations neuropsychiatriques de la maladie de Darier: résultat préliminaire d'une étude epidémioclinique et génétique de huit familles. Encephale 2009; 35: 32-35.

DOI: https://doi.org/10.1016/j.encep.2007.09.009

Wang SL, Yang SF, Chen CC, Tsai PT, Chai CY. Darier's disease associated with bipolar affective disorder: a case report. Kaohsiung J Med Sci 2002; 18: 622-626.

Jones I, Jacobsen N, Green EK, Elvidge GP, Owen MJ, Craddock N. Evidence for familial cosegregation of major affective disorder and genetic markers flanking the gene for Darier's disease. Mol Psychiatry 2002; 7: 424-427.

DOI: https://doi.org/10.1038/sj.mp.4000989

Cederlof M, Bergen SE, Langstrom N, Larsson H, Boman M, Craddock N, et al. The association between Darier disease, bipolar disorder, and schizophrenia revisited: a population-based family study. Bipolar Disord 2015; 17: 340-344.

DOI: https://doi.org/10.1111/bdi.12257

Dodiuk-Gad RP, Cohen-Barak E, Khayat M, Milo H, Amariglio-Diskin L, Danial-Faran N, et al. Darier disease in Israel: combined evaluation of genetic and neuropsychiatric aspects. Br J Dermatol 2016; 174: 562-568.

DOI: https://doi.org/10.1111/bjd.14220

Berridge MJ, Bootman MD, Lipp P. Calcium - a life and death signal. Nature 1998; 395: 645-648.

DOI: https://doi.org/10.1038/27094

Atack JR, Broughton HB, Pollack SJ. Inositol monophosphatase - a putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 1995; 18: 343-349.

DOI: https://doi.org/10.1016/0166-2236(95)93926-O

Jope RS, Song L, Li PP, Young LT, Kish SJ, Pacheco MA, et al. The phosphoinositide signal transduction system is impaired in bipolar affective disorder brain. J Neurochem 1996; 66: 2402-2409.

DOI: https://doi.org/10.1046/j.1471-4159.1996.66062402.x

Ngo J, Haber R. Exacerbation of Darier disease by lithium carbonate. J Cutan Med Surg 2010; 14: 80-84.

DOI: https://doi.org/10.2310/7750.2009.08067

Rubin MB. Lithium-induced Darier's disease. J Am Acad Dermatol 1995; 32: 674-675.

DOI: https://doi.org/10.1016/0190-9622(95)90374-7

Sule N, Teszas A, Kalman E, Szigeti R, Miseta A, Kellermayer R. Lithium suppresses epidermal SERCA2 and PMR1 levels in the rat. Pathol Oncol Res 2006; 12: 234-236.

DOI: https://doi.org/10.1007/BF02893419

Liu LH, Boivin GP, Prasad V, Periasamy M, Shull GE. Squamous cell tumors in mice heterozygous for a null allele of Atp2a2, encoding the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump. J Biol Chem 2001; 276: 26737-26740.

DOI: https://doi.org/10.1074/jbc.C100275200

Endo Y, Uzawa K, Mochida Y, Shiiba M, Bukawa H, Yokoe H, et al. Sarcoendoplasmic reticulum Ca(2+) ATPase type 2 downregulated in human oral squamous cell carcinoma. Int J Cancer 2004; 110: 225-231.

DOI: https://doi.org/10.1002/ijc.20118

Pacifico F, Ulianich L, De Micheli S, Treglia S, Leonardi A, Vito P, et al. The expression of the sarco/endoplasmic reticulum Ca2+-ATPases in thyroid and its down-regulation following neoplastic transformation. J Mol Endocrinol 2003; 30: 399-409.

DOI: https://doi.org/10.1677/jme.0.0300399

Gelebart P, Kovacs T, Brouland JP, van Gorp R, Grossmann J, Rivard N, et al. Expression of endomembrane calcium pumps in colon and gastric cancer cells. Induction of SERCA3 expression during differentiation. J Biol Chem 2002; 277: 26310-26320.

DOI: https://doi.org/10.1074/jbc.M201747200

Korosec B, Glavac D, Rott T, Ravnik-Glavac M. Alterations in the ATP2A2 gene in correlation with colon and lung cancer. Cancer Genet Cytogenet 2006; 171: 105-111.

DOI: https://doi.org/10.1016/j.cancergencyto.2006.06.016

Prasad V, Boivin GP, Miller ML, Liu LH, Erwin CR, Warner BW, et al. Haploinsufficiency of Atp2a2, encoding the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, predisposes mice to squamous cell tumors via a novel mode of cancer susceptibility. Cancer Res 2005; 65: 8655-8661.

DOI: https://doi.org/10.1158/0008-5472.CAN-05-0026

Li L, Tucker RW, Hennings H, Yuspa SH. Inhibitors of the intracellular Ca(2+)-ATPase in cultured mouse keratinocytes reveal components of terminal differentiation that are regulated by distinct intracellular Ca2+ compartments. Cell Growth Differ 1995; 6: 1171-1184.

Fan L, Li A, Li W, Cai P, Yang B, Zhang M, et al. Novel role of sarco/endoplasmic reticulum calcium ATPase 2 in development of colorectal cancer and its regulation by F36, a curcumin analog. Biomed Pharmacother 2014; 68: 1141-1148.

DOI: https://doi.org/10.1016/j.biopha.2014.10.014

Wang L, Li W, Yang Y, Hu Y, Gu Y, Shu Y, et al. High expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2b blocks cell differentiation in human liposarcoma cells. Life Sci 2014; 99: 37-43.

DOI: https://doi.org/10.1016/j.lfs.2014.01.067

Hu Z, Bonifas JM, Beech J, Bench G, Shigihara T, Ogawa H, et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 2000; 24: 61-65.

DOI: https://doi.org/10.1038/71701

Korman AM, Milani-Nejad N. Darier disease. JAMA Dermatol 2020 Aug 12. [Online ahead of print].

DOI: https://doi.org/10.1001/jamadermatol.2020.2543

Burge SM, Buxton PK. Topical isotretinoin in Darier's disease. Br J Dermatol 1995; 133: 924-928.

DOI: https://doi.org/10.1111/j.1365-2133.1995.tb06927.x

Burkhart CG, Burkhart CN. Tazarotene gel for Darier's disease. J Am Acad Dermatol 1998; 38: 1001-1002.

DOI: https://doi.org/10.1016/S0190-9622(98)70168-9

Abe M, Inoue C, Yokoyama Y, Ishikawa O. Successful treatment of Darier's disease with adapalene gel. Pediatr Dermatol 2011; 28: 197-198.

DOI: https://doi.org/10.1111/j.1525-1470.2009.01077.x

Shalita A. The integral role of topical and oral retinoids in the early treatment of acne. J Eur Acad Dermatol Venereol 2001; 15: 43-49.

DOI: https://doi.org/10.1046/j.0926-9959.2001.00012.x

Chu S, Michelle L, Ekelem C, Sung CT, Rojek N, Mesinkovska NA. Oral isotretinoin for the treatment of dermatologic conditions other than acne: a systematic review and discussion of future directions. Arch Dermatol Res 2020 Nov 5. [Online ahead of print].

DOI: https://doi.org/10.1007/s00403-020-02152-4

Czernielewski J, Michel S, Bouclier M, Baker M, Hensby JC. Adapalene biochemistry and the evolution of a new topical retinoid for treatment of acne. J Eur Acad Dermatol Venereol 2001; 15: 5-12.

DOI: https://doi.org/10.1046/j.0926-9959.2001.00006.x

Demczuk M, Huang H, White C, Kipp JL. Retinoic acid regulates calcium signaling to promote mouse ovarian granulosa cell proliferation. Biol Reprod 2016; 95: 70.

DOI: https://doi.org/10.1095/biolreprod.115.136986

Launay S, Gianni M, Diomede L, Machesky LM, Enouf J, Papp B. Enhancement of ATRA-induced cell differentiation by inhibition of calcium accumulation into the endoplasmic reticulum: cross-talk between RAR alpha and calcium-dependent signaling. Blood 2003; 101: 3220-3228.

DOI: https://doi.org/10.1182/blood-2002-09-2730

Wolf JE, Jr. Potential anti-inflammatory effects of topical retinoids and retinoid analogues. Adv Ther 2002; 19: 109-118.

DOI: https://doi.org/10.1007/BF02850266

Letule V, Herzinger T, Ruzicka T, Molin S. Treatment of Darier disease with oral alitretinoin. Clin Exp Dermatol 2013; 38: 523-525.

DOI: https://doi.org/10.1111/ced.12078

Beier C, Kaufmann R. Efficacy of erbium:YAG laser ablation in Darier disease and Hailey-Hailey disease. Arch Dermatol 1999; 135: 423-427.

DOI: https://doi.org/10.1001/archderm.135.4.423

van Dooren-Greebe RJ, van de Kerkhof PC, Happle R. Acitretin monotherapy in Darier's disease. Br J Dermatol 1989; 121: 375-379.

DOI: https://doi.org/10.1111/j.1365-2133.1989.tb01432.x

Gilgor RS, Chiaramonti A, Goldsmith LA, Lazarus GS. Evaluation of 13-cis retinoic acid in lamellar ichthyosis, pityriasis rubra pilaris and Darier's disease. Cutis 1980; 25: 380-381, 385.

Zavattaro E, Celasco M, Delrosso G, Ferri S, Bornacina C, Valente G, et al. Acitretin-induced acral hemorrhagic lesions in Darier-White disease. Cutis 2014; 94: E1-E5.

Larbre B, Nicolas JF, Frappaz A, Thivolet J. Cyclosporine et maladie de Darier. Ann Dermatol Venereol 1993; 120: 310-311.

Gruber SJ, Cornea RL, Li J, Peterson KC, Schaaf TM, Gillispie GD, et al. Discovery of enzyme modulators via high-throughput time-resolved FRET in living cells. J Biomol Screen 2014; 19: 215-222.

DOI: https://doi.org/10.1177/1087057113510740

Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Calcium in cell injury and death. Annu Rev Pathol 2006; 1: 405-434.

DOI: https://doi.org/10.1146/annurev.pathol.1.110304.100218

Downloads

Published

2021-04-15

How to Cite

Bachar-Wikström, E., & Wikström, J. D. (2021). Darier Disease – A Multi-organ Condition?. Acta Dermato-Venereologica, 101(4), adv00430. https://doi.org/10.2340/00015555-3770